diff --git a/elprop/elprop b/elprop/elprop index b8c25d4..7093095 100755 --- a/elprop/elprop +++ b/elprop/elprop @@ -1,4 +1,6 @@ -#!/bin/sh +#!/usr/bin/env bash + +cd "$(dirname "$0")" cargo build --workspace cargo run -- "$@" diff --git a/elprop/src/bin/code/data.rs b/elprop/src/bin/code/data.rs index 30cc93b..8d14cd1 100755 --- a/elprop/src/bin/code/data.rs +++ b/elprop/src/bin/code/data.rs @@ -366,6 +366,9 @@ impl Function { "StringOrSymbol" => { Ok(Type::Object(vec![ObjectType::String, ObjectType::Symbol])) } + "LispTime" => { + Ok(Type::Object(vec![ObjectType::Cons])) + } "Symbol" => Ok(Type::Object(vec![ObjectType::Symbol])), "Number" | "NumberValue" => { Ok(Type::Object(vec![ObjectType::Integer, ObjectType::Float])) diff --git a/elprop/src/bin/runner.rs b/elprop/src/bin/runner.rs index 8f4fc7d..df3be6d 100644 --- a/elprop/src/bin/runner.rs +++ b/elprop/src/bin/runner.rs @@ -3,6 +3,7 @@ use code::output::{Output, Status}; use proptest::prelude::TestCaseError; use proptest::test_runner::{Config, TestError, TestRunner}; use std::cell::RefCell; +use std::collections::HashMap; use std::io::{BufRead, BufReader, Write}; use std::process::Stdio; use std::{fs, path::PathBuf}; @@ -42,14 +43,19 @@ fn main() { let rune_panicked = RefCell::new(false); let master_count = RefCell::new(0); + let arguments = RefCell::new(HashMap::>::new()); let outputs = RefCell::new(Vec::new()); for func in config.functions { let name = func.name.clone(); + arguments.borrow_mut().entry(name.clone()).or_default(); + let result = runner.run(&func.strategy(), |input| { if *rune_panicked.borrow() { return Err(TestCaseError::Reject("Rune panicked".into())); } let body = code::data::print_args(&input); + arguments.borrow_mut().entry(name.clone()).and_modify(|v| v.push(body.clone())); + // send to emacs println!(";; sending to Emacs"); let test_str = format!(";; ELPROP_START\n({name} {body})\n;; ELPROP_END"); @@ -106,6 +112,10 @@ fn main() { outputs.borrow_mut().push(output); } + let args_file = target.join("arguments.json"); + let json = serde_json::to_string(&*arguments.borrow()).expect("Malformed Arguments JSON"); + fs::write(args_file, json).unwrap(); + let _ = child.kill(); let json = serde_json::to_string(&*outputs.borrow()).expect("Malformed Output JSON"); let output_file = target.join("output.json"); diff --git a/src/fns.rs b/src/fns.rs index 394370c..03d4ce0 100644 --- a/src/fns.rs +++ b/src/fns.rs @@ -978,7 +978,16 @@ fn disable_debug() -> bool { #[elprop("[\x00-\x7F]*", _)] fn base64_encode_string(string: &str, line_break: OptionalFlag) -> Result { if string.is_ascii() { - Ok(base64_encode(string, line_break.is_some(), true, true)) + Ok(base64_encode(string, line_break.is_some(), true, false)) + } else { + Err(anyhow!("Multibyte character in data for base64 encoding")) + } +} + +#[defun] +fn base64url_encode_string(string: &str, no_pad: OptionalFlag) -> Result { + if string.is_ascii() { + Ok(base64_encode(string, false, no_pad.is_none(), true)) } else { Err(anyhow!("Multibyte character in data for base64 encoding")) } @@ -991,6 +1000,36 @@ fn base64_encode(string: &str, _line_break: bool, pad: bool, base64url: bool) -> engine.encode(string) } +#[defun] +fn base64_decode_string( + string: &str, + base64url: OptionalFlag, + ignore_invalid: OptionalFlag, +) -> Result> { + let error_msg = "Invalid base64 data"; + base64_decode(string, base64url.is_some(), ignore_invalid.is_some()) + .map_err(|_| anyhow!(error_msg)) +} + +fn base64_decode( + string: &str, + base64url: bool, + ignore_invalid: bool, +) -> Result, base64::DecodeError> { + let config = base64::engine::GeneralPurposeConfig::new() + .with_decode_padding_mode(base64::engine::DecodePaddingMode::Indifferent) + .with_decode_allow_trailing_bits(true); + let alphabets = if base64url { base64::alphabet::URL_SAFE } else { base64::alphabet::STANDARD }; + let engine = base64::engine::GeneralPurpose::new(&alphabets, config); + if ignore_invalid { + let santizied_string: String = + string.chars().filter(|c| alphabets.as_str().contains(*c)).collect(); + engine.decode(santizied_string) + } else { + engine.decode(string) + } +} + #[cfg(test)] mod test { use crate::{fns::levenshtein_distance, interpreter::assert_lisp}; @@ -998,7 +1037,31 @@ mod test { #[test] fn test_base64_encode_string() { assert_lisp("(base64-encode-string \"hello\")", "\"aGVsbG8=\""); + assert_lisp("(base64-encode-string \"aa>\")", "\"YWE+\""); + assert_lisp("(base64-encode-string \" a>\")", "\"IGE+\""); + } + + #[test] + fn test_base64url_encode_string() { + assert_lisp("(base64url-encode-string \" \")", "\"IA==\""); + assert_lisp("(base64url-encode-string \"aa>\")", "\"YWE-\""); + assert_lisp("(base64url-encode-string \" a>\")", "\"IGE-\""); + } + + // Need a way to convert to ByteString instead of String + #[test] + #[ignore] + fn test_base64_decode_string() { + assert_lisp("(base64-decode-string \"aa\" nil t)", "\"i\""); + // assert_lisp("(base64-decode-string \"0+\" nil t)", r#"\323"#); + // assert_lisp("(base64-decode-string \"Wj1Yse54𐩃-N\" t t)", "\"Z=X\261\356x\370\""); // assert_lisp("(base64-encode-string \"aa>\")", "\"YWE+\""); + // assert_lisp("(base64-encode-string \" a>\")", "\"IGE+\""); + } + #[test] + #[ignore] + fn test_base64_url_decode_string() { + assert_lisp("(base64-decode-string \"Wj1Yse54𐩃-N\" t t)", "\"Z=X\\261\\356x\\370\""); } #[test] diff --git a/src/timefns.c b/src/timefns.c new file mode 100644 index 0000000..28df55a --- /dev/null +++ b/src/timefns.c @@ -0,0 +1,2128 @@ +/* Timestamp functions for Emacs + +Copyright (C) 1985-1987, 1989, 1993-2024 Free Software Foundation, Inc. + +This file is part of GNU Emacs. + +GNU Emacs is free software: you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation, either version 3 of the License, or (at +your option) any later version. + +GNU Emacs is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU Emacs. If not, see . */ + +#include + +/* Work around GCC bug 102671. */ +#if 10 <= __GNUC__ +# pragma GCC diagnostic ignored "-Wanalyzer-null-dereference" +#endif + +#include "systime.h" + +#include "blockinput.h" +#include "bignum.h" +#include "coding.h" +#include "lisp.h" +#include "pdumper.h" + +#include + +#include +#include +#include +#include +#include + +#ifdef WINDOWSNT +extern clock_t sys_clock (void); +#endif + +#ifdef HAVE_TIMEZONE_T +# include +# if defined __NetBSD_Version__ && __NetBSD_Version__ < 700000000 +# define HAVE_TZALLOC_BUG true +# endif +#endif +#ifndef HAVE_TZALLOC_BUG +# define HAVE_TZALLOC_BUG false +#endif + +enum { TM_YEAR_BASE = 1900 }; + +#ifndef HAVE_TM_GMTOFF +# define HAVE_TM_GMTOFF false +#endif + +/* Compile with -DFASTER_TIMEFNS=0 to disable common optimizations and + allow easier testing of some slow-path code. */ +#ifndef FASTER_TIMEFNS +# define FASTER_TIMEFNS 1 +#endif + +/* current-time-list defaults to t, typically generating (HI LO US PS) + timestamps. To change the default to nil, generating (TICKS . HZ) + timestamps, compile with -DCURRENT_TIME_LIST=0. */ +#ifndef CURRENT_TIME_LIST +enum { CURRENT_TIME_LIST = true }; +#endif + +#if FASTER_TIMEFNS && !FIXNUM_OVERFLOW_P (1000000000) +# define timespec_hz make_fixnum (TIMESPEC_HZ) +#else +static Lisp_Object timespec_hz; +#endif + +#define TRILLION 1000000000000 +#if FASTER_TIMEFNS && !FIXNUM_OVERFLOW_P (TRILLION) +# define trillion make_fixnum (TRILLION) +#else +static Lisp_Object trillion; +#endif +#if ! (FASTER_TIMEFNS && TRILLION <= ULONG_MAX) +# if FIXNUM_OVERFLOW_P (TRILLION) +# define ztrillion (*xbignum_val (trillion)) +# else +static mpz_t ztrillion; +# define NEED_ZTRILLION_INIT +# endif +#endif + +/* True if the nonzero Lisp integer HZ divides evenly into a trillion. */ +static bool +trillion_factor (Lisp_Object hz) +{ + if (FASTER_TIMEFNS) + { + if (FIXNUMP (hz)) + return TRILLION % XFIXNUM (hz) == 0; + if (!FIXNUM_OVERFLOW_P (TRILLION)) + return false; + } + static_assert (TRILLION <= INTMAX_MAX); + intmax_t ihz; + return integer_to_intmax (hz, &ihz) && TRILLION % ihz == 0; +} + +/* Return a struct timeval that is roughly equivalent to T. + Use the least timeval not less than T. + Return an extremal value if the result would overflow. */ +struct timeval +make_timeval (struct timespec t) +{ + struct timeval tv; + tv.tv_sec = t.tv_sec; + tv.tv_usec = t.tv_nsec / 1000; + + if (t.tv_nsec % 1000 != 0) + { + if (tv.tv_usec < 999999) + tv.tv_usec++; + else + { + time_t s1; + if (!ckd_add (&s1, tv.tv_sec, 1)) + { + tv.tv_sec = s1; + tv.tv_usec = 0; + } + } + } + + return tv; +} + +/* Yield A's UTC offset, or an unspecified value if unknown. */ +static long int +tm_gmtoff (struct tm *a) +{ +#if HAVE_TM_GMTOFF + return a->tm_gmtoff; +#else + return 0; +#endif +} + +/* Yield A - B, measured in seconds. + This function is copied from the GNU C Library. */ +static int +tm_diff (struct tm *a, struct tm *b) +{ + /* Compute intervening leap days correctly even if year is negative. + Take care to avoid int overflow in leap day calculations, + but it's OK to assume that A and B are close to each other. */ + int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3); + int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3); + int a100 = a4 / 25 - (a4 % 25 < 0); + int b100 = b4 / 25 - (b4 % 25 < 0); + int a400 = a100 >> 2; + int b400 = b100 >> 2; + int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400); + int years = a->tm_year - b->tm_year; + int days = (365 * years + intervening_leap_days + + (a->tm_yday - b->tm_yday)); + return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour)) + + (a->tm_min - b->tm_min)) + + (a->tm_sec - b->tm_sec)); +} + +enum { tzeqlen = sizeof "TZ=" - 1 }; + +/* Time zones equivalent to current local time and to UTC, respectively. */ +static timezone_t local_tz; +static timezone_t const utc_tz = 0; + +static struct tm * +emacs_localtime_rz (timezone_t tz, time_t const *t, struct tm *tm) +{ +#ifdef WINDOWSNT + /* The Windows CRT functions are "optimized for speed", so they don't + check for timezone and DST changes if they were last called less + than 1 minute ago (see http://support.microsoft.com/kb/821231). + So all Emacs features that repeatedly call time functions (e.g., + display-time) are in real danger of missing timezone and DST + changes. Calling tzset before each localtime call fixes that. */ + tzset (); +#endif + tm = localtime_rz (tz, t, tm); + if (!tm && errno == ENOMEM) + memory_full (SIZE_MAX); + return tm; +} + +static AVOID +invalid_time_zone_specification (Lisp_Object zone) +{ + xsignal2 (Qerror, build_string ("Invalid time zone specification"), zone); +} + +/* Free a timezone, except do not free the time zone for local time. + Freeing utc_tz is also a no-op. */ +static void +xtzfree (timezone_t tz) +{ + if (tz != local_tz) + tzfree (tz); +} + +/* Convert the Lisp time zone rule ZONE to a timezone_t object. + The returned value either is 0, or is LOCAL_TZ, or is newly allocated. + If SETTZ, set Emacs local time to the time zone rule; otherwise, + the caller should eventually pass the returned value to xtzfree. */ +static timezone_t +tzlookup (Lisp_Object zone, bool settz) +{ + static char const tzbuf_format[] = "<%+.*"pI"d>%s%"pI"d:%02d:%02d"; + char const *trailing_tzbuf_format = tzbuf_format + sizeof "<%+.*"pI"d" - 1; + char tzbuf[sizeof tzbuf_format + 2 * INT_STRLEN_BOUND (EMACS_INT)]; + char const *zone_string; + timezone_t new_tz; + + if (NILP (zone)) + return local_tz; + else if (BASE_EQ (zone, make_fixnum (0)) || EQ (zone, Qt)) + { + zone_string = "UTC0"; + new_tz = utc_tz; + } + else + { + bool plain_integer = FIXNUMP (zone); + + if (EQ (zone, Qwall)) + zone_string = 0; + else if (STRINGP (zone)) + zone_string = SSDATA (ENCODE_SYSTEM (zone)); + else if (plain_integer || (CONSP (zone) && FIXNUMP (XCAR (zone)) + && CONSP (XCDR (zone)))) + { + Lisp_Object abbr UNINIT; + if (!plain_integer) + { + abbr = XCAR (XCDR (zone)); + zone = XCAR (zone); + } + + EMACS_INT abszone = eabs (XFIXNUM (zone)), hour = abszone / (60 * 60); + int hour_remainder = abszone % (60 * 60); + int min = hour_remainder / 60, sec = hour_remainder % 60; + + if (plain_integer) + { + int prec = 2; + EMACS_INT numzone = hour; + if (hour_remainder != 0) + { + prec += 2, numzone = 100 * numzone + min; + if (sec != 0) + prec += 2, numzone = 100 * numzone + sec; + } + sprintf (tzbuf, tzbuf_format, prec, + XFIXNUM (zone) < 0 ? -numzone : numzone, + &"-"[XFIXNUM (zone) < 0], hour, min, sec); + zone_string = tzbuf; + } + else + { + AUTO_STRING (leading, "<"); + AUTO_STRING_WITH_LEN (trailing, tzbuf, + sprintf (tzbuf, trailing_tzbuf_format, + &"-"[XFIXNUM (zone) < 0], + hour, min, sec)); + zone_string = SSDATA (concat3 (leading, ENCODE_SYSTEM (abbr), + trailing)); + } + } + else + invalid_time_zone_specification (zone); + + new_tz = tzalloc (zone_string); + + if (HAVE_TZALLOC_BUG && !new_tz && errno != ENOMEM && plain_integer + && XFIXNUM (zone) % (60 * 60) == 0) + { + /* tzalloc mishandles POSIX strings; fall back on tzdb if + possible (Bug#30738). */ + sprintf (tzbuf, "Etc/GMT%+"pI"d", - (XFIXNUM (zone) / (60 * 60))); + new_tz = tzalloc (zone_string); + } + + if (!new_tz) + { + if (errno == ENOMEM) + memory_full (SIZE_MAX); + invalid_time_zone_specification (zone); + } + } + + if (settz) + { + block_input (); + emacs_setenv_TZ (zone_string); + tzset (); + timezone_t old_tz = local_tz; + local_tz = new_tz; + tzfree (old_tz); + unblock_input (); + } + + return new_tz; +} + +void +init_timefns (void) +{ +#ifdef HAVE_UNEXEC + /* A valid but unlikely setting for the TZ environment variable. + It is OK (though a bit slower) if the user chooses this value. */ + static char dump_tz_string[] = "TZ=UtC0"; + + /* When just dumping out, set the time zone to a known unlikely value + and skip the rest of this function. */ + if (will_dump_with_unexec_p ()) + { + xputenv (dump_tz_string); + tzset (); + return; + } +#endif + + char *tz = getenv ("TZ"); + +#ifdef HAVE_UNEXEC + /* If the execution TZ happens to be the same as the dump TZ, + change it to some other value and then change it back, + to force the underlying implementation to reload the TZ info. + This is needed on implementations that load TZ info from files, + since the TZ file contents may differ between dump and execution. */ + if (tz && strcmp (tz, &dump_tz_string[tzeqlen]) == 0) + { + ++*tz; + tzset (); + --*tz; + } +#endif + + /* Set the time zone rule now, so that the call to putenv is done + before multiple threads are active. */ + tzlookup (tz ? build_string (tz) : Qwall, true); +} + +/* Report that a time value is out of range for Emacs. */ +static AVOID +time_overflow (void) +{ + error ("Specified time is not representable"); +} + +static AVOID +time_spec_invalid (void) +{ + error ("Invalid time specification"); +} + +static AVOID +time_error (int err) +{ + switch (err) + { + case ENOMEM: memory_full (SIZE_MAX); + case EOVERFLOW: time_overflow (); + default: time_spec_invalid (); + } +} + +static AVOID +invalid_hz (Lisp_Object hz) +{ + xsignal2 (Qerror, build_string ("Invalid time frequency"), hz); +} + +/* Return the upper part of the time T (everything but the bottom 16 bits). */ +static Lisp_Object +hi_time (time_t t) +{ + return INT_TO_INTEGER (t >> LO_TIME_BITS); +} + +/* Return the bottom bits of the time T. */ +static Lisp_Object +lo_time (time_t t) +{ + return make_fixnum (t & ((1 << LO_TIME_BITS) - 1)); +} + +/* When converting a double to a fraction TICKS / HZ, HZ is equal to + FLT_RADIX * P where 0 <= P < FLT_RADIX_POWER_SIZE. The tiniest + nonzero double uses the maximum P. */ +enum { flt_radix_power_size = DBL_MANT_DIG - DBL_MIN_EXP + 1 }; + +/* A integer vector of size flt_radix_power_size. The Pth entry + equals FLT_RADIX**P. */ +static Lisp_Object flt_radix_power; + +/* Return NUMERATOR / DENOMINATOR, rounded to the nearest double. + Arguments must be Lisp integers, and DENOMINATOR must be positive. */ +static double +frac_to_double (Lisp_Object numerator, Lisp_Object denominator) +{ + intmax_t intmax_numerator, intmax_denominator; + if (FASTER_TIMEFNS + && integer_to_intmax (numerator, &intmax_numerator) + && integer_to_intmax (denominator, &intmax_denominator) + && intmax_numerator % intmax_denominator == 0) + return intmax_numerator / intmax_denominator; + + /* Compute number of base-FLT_RADIX digits in numerator and denominator. */ + mpz_t const *n = bignum_integer (&mpz[0], numerator); + mpz_t const *d = bignum_integer (&mpz[1], denominator); + ptrdiff_t ndig = mpz_sizeinbase (*n, FLT_RADIX); + ptrdiff_t ddig = mpz_sizeinbase (*d, FLT_RADIX); + + /* Scale with SCALE when doing integer division. That is, compute + (N * FLT_RADIX**SCALE) / D [or, if SCALE is negative, N / (D * + FLT_RADIX**-SCALE)] as a bignum, convert the bignum to double, + then divide the double by FLT_RADIX**SCALE. First scale N + (or scale D, if SCALE is negative) ... */ + ptrdiff_t scale = ddig - ndig + DBL_MANT_DIG; + if (scale < 0) + { + mpz_mul_2exp (mpz[1], *d, - (scale * LOG2_FLT_RADIX)); + d = &mpz[1]; + } + else + { + /* min so we don't scale tiny numbers as if they were normalized. */ + scale = min (scale, flt_radix_power_size - 1); + + mpz_mul_2exp (mpz[0], *n, scale * LOG2_FLT_RADIX); + n = &mpz[0]; + } + /* ... and then divide, with quotient Q and remainder R. */ + mpz_t *q = &mpz[2]; + mpz_t *r = &mpz[3]; + mpz_tdiv_qr (*q, *r, *n, *d); + + /* The amount to add to the absolute value of Q so that truncating + it to double will round correctly. */ + int incr; + + /* Round the quotient before converting it to double. + If the quotient is less than FLT_RADIX ** DBL_MANT_DIG, + round to the nearest integer; otherwise, it is less than + FLT_RADIX ** (DBL_MANT_DIG + 1) and round it to the nearest + multiple of FLT_RADIX. Break ties to even. */ + if (mpz_sizeinbase (*q, FLT_RADIX) <= DBL_MANT_DIG) + { + /* Converting to double will use the whole quotient so add 1 to + its absolute value as per round-to-even; i.e., if the doubled + remainder exceeds the denominator, or exactly equals the + denominator and adding 1 would make the quotient even. */ + mpz_mul_2exp (*r, *r, 1); + int cmp = mpz_cmpabs (*r, *d); + incr = cmp > 0 || (cmp == 0 && (FASTER_TIMEFNS && FLT_RADIX == 2 + ? mpz_odd_p (*q) + : mpz_tdiv_ui (*q, FLT_RADIX) & 1)); + } + else + { + /* Converting to double will discard the quotient's low-order digit, + so add FLT_RADIX to its absolute value as per round-to-even. */ + int lo_2digits = mpz_tdiv_ui (*q, FLT_RADIX * FLT_RADIX); + eassume (0 <= lo_2digits && lo_2digits < FLT_RADIX * FLT_RADIX); + int lo_digit = lo_2digits % FLT_RADIX; + incr = ((lo_digit > FLT_RADIX / 2 + || (lo_digit == FLT_RADIX / 2 && FLT_RADIX % 2 == 0 + && ((lo_2digits / FLT_RADIX) & 1 + || mpz_sgn (*r) != 0))) + ? FLT_RADIX : 0); + } + + /* Increment the absolute value of the quotient by INCR. */ + if (!FASTER_TIMEFNS || incr != 0) + (mpz_sgn (*n) < 0 ? mpz_sub_ui : mpz_add_ui) (*q, *q, incr); + + /* Rescale the integer Q back to double. This step does not round. */ + return scalbn (mpz_get_d (*q), -scale); +} + +/* Convert Z to time_t, returning true if it fits. */ +static bool +mpz_time (mpz_t const z, time_t *t) +{ + if (TYPE_SIGNED (time_t)) + { + intmax_t i; + return mpz_to_intmax (z, &i) && !ckd_add (t, i, 0); + } + else + { + uintmax_t i; + return mpz_to_uintmax (z, &i) && !ckd_add (t, i, 0); + } +} + +/* Return a valid timespec (S, N) if S is in time_t range, + an invalid timespec otherwise. */ +static struct timespec +s_ns_to_timespec (intmax_t s, long int ns) +{ + time_t sec; + long int nsec = ckd_add (&sec, s, 0) ? -1 : ns; + return make_timespec (sec, nsec); +} + +/* Components of a Lisp timestamp (TICKS . HZ). Using this C struct can + avoid the consing overhead of creating (TICKS . HZ). */ +struct ticks_hz +{ + /* Clock count as a Lisp integer. */ + Lisp_Object ticks; + + /* Clock frequency (ticks per second) as a positive Lisp integer. */ + Lisp_Object hz; +}; + +/* Convert (TICKS . HZ) to struct timespec, returning an invalid + timespec if the result would not fit. */ +static struct timespec +ticks_hz_to_timespec (Lisp_Object ticks, Lisp_Object hz) +{ + int ns; + mpz_t *q = &mpz[0]; + mpz_t const *qt = q; + + /* Floor-divide (TICKS * TIMESPEC_HZ) by HZ, + yielding quotient Q (tv_sec) and remainder NS (tv_nsec). + Return an invalid timespec if Q does not fit in time_t. + For speed, prefer fixnum arithmetic if it works. */ + if (FASTER_TIMEFNS && BASE_EQ (hz, timespec_hz)) + { + if (FIXNUMP (ticks)) + { + EMACS_INT s = XFIXNUM (ticks) / TIMESPEC_HZ; + ns = XFIXNUM (ticks) % TIMESPEC_HZ; + if (ns < 0) + s--, ns += TIMESPEC_HZ; + return s_ns_to_timespec (s, ns); + } + ns = mpz_fdiv_q_ui (*q, *xbignum_val (ticks), TIMESPEC_HZ); + } + else if (FASTER_TIMEFNS && BASE_EQ (hz, make_fixnum (1))) + { + ns = 0; + if (FIXNUMP (ticks)) + return s_ns_to_timespec (XFIXNUM (ticks), ns); + qt = xbignum_val (ticks); + } + else + { + mpz_mul_ui (*q, *bignum_integer (q, ticks), TIMESPEC_HZ); + mpz_fdiv_q (*q, *q, *bignum_integer (&mpz[1], hz)); + ns = mpz_fdiv_q_ui (*q, *q, TIMESPEC_HZ); + } + + /* Check that Q fits in time_t, not merely in RESULT.tv_sec. With some MinGW + versions, tv_sec is a 64-bit type, whereas time_t is a 32-bit type. */ + time_t sec; + return mpz_time (*qt, &sec) ? make_timespec (sec, ns) : invalid_timespec (); +} + +/* C timestamp forms. This enum is passed to conversion functions to + specify the desired C timestamp form. */ +enum cform + { + CFORM_TICKS_HZ, /* struct ticks_hz */ + CFORM_TIMESPEC, /* struct timespec */ + CFORM_SECS_ONLY, /* struct timespec but tv_nsec irrelevant + if timespec valid */ + CFORM_DOUBLE /* double */ + }; + +/* A C timestamp in one of the forms specified by enum cform. */ +union c_time +{ + struct ticks_hz th; + struct timespec ts; + double d; +}; + +/* From a valid timestamp (TICKS . HZ), generate the corresponding + time value in CFORM form. */ +static union c_time +decode_ticks_hz (Lisp_Object ticks, Lisp_Object hz, enum cform cform) +{ + switch (cform) + { + case CFORM_DOUBLE: + return (union c_time) { .d = frac_to_double (ticks, hz) }; + + case CFORM_TICKS_HZ: + return (union c_time) { .th = { .ticks = ticks, .hz = hz } }; + + default: + return (union c_time) { .ts = ticks_hz_to_timespec (ticks, hz) }; + } +} + +/* Convert the finite number T into a C time of form CFORM, truncating + toward minus infinity. Signal an error if unsuccessful. */ +static union c_time +decode_float_time (double t, enum cform cform) +{ + if (FASTER_TIMEFNS && cform == CFORM_DOUBLE) + return (union c_time) { .d = t }; + + Lisp_Object ticks, hz; + if (t == 0) + { + ticks = make_fixnum (0); + hz = make_fixnum (1); + } + else + { + int scale = double_integer_scale (t); + /* Because SCALE treats trailing zeros in T as significant, + on typical platforms with IEEE floating point + (time-convert 3.5 t) yields (7881299347898368 . 2251799813685248), + a precision of 2**-51 s, not (7 . 2), a precision of 0.5 s. + Although numerically correct, this generates largish integers. + On 64bit systems, this should not matter very much, tho. */ + eassume (scale < flt_radix_power_size); + + if (scale < 0) + { + /* T is finite but so large that HZ would be less than 1 if + T's precision were represented exactly. SCALE must be + nonnegative, as the (TICKS . HZ) representation requires + HZ to be at least 1. So use SCALE = 0, which converts T to + (T . 1), which is the exact numeric value with too-large HZ, + which is typically better than signaling overflow. */ + scale = 0; + } + + /* Compute TICKS, HZ such that TICKS / HZ exactly equals T, where HZ is + T's frequency or 1, whichever is greater. Here, “frequency” means + 1/precision. Cache HZ values in flt_radix_power. */ + double scaled = scalbn (t, scale); + eassert (trunc (scaled) == scaled); + ticks = double_to_integer (scaled); + hz = AREF (flt_radix_power, scale); + if (NILP (hz)) + { + mpz_ui_pow_ui (mpz[0], FLT_RADIX, scale); + hz = make_integer_mpz (); + ASET (flt_radix_power, scale, hz); + } + } + return decode_ticks_hz (ticks, hz, cform); +} + +/* Make a 4-element timestamp (HI LO US PS) from TICKS and HZ. + Drop any excess precision. */ +static Lisp_Object +ticks_hz_list4 (Lisp_Object ticks, Lisp_Object hz) +{ + /* mpz[0] = floor ((ticks * trillion) / hz). */ + mpz_t const *zticks = bignum_integer (&mpz[0], ticks); +#if FASTER_TIMEFNS && TRILLION <= ULONG_MAX + mpz_mul_ui (mpz[0], *zticks, TRILLION); +#else + mpz_mul (mpz[0], *zticks, ztrillion); +#endif + mpz_fdiv_q (mpz[0], mpz[0], *bignum_integer (&mpz[1], hz)); + + /* mpz[0] = floor (mpz[0] / trillion), with US = the high six digits of the + 12-digit remainder, and PS = the low six digits. */ +#if FASTER_TIMEFNS && TRILLION <= ULONG_MAX + unsigned long int fullps = mpz_fdiv_q_ui (mpz[0], mpz[0], TRILLION); + int us = fullps / 1000000; + int ps = fullps % 1000000; +#else + mpz_fdiv_qr (mpz[0], mpz[1], mpz[0], ztrillion); + int ps = mpz_fdiv_q_ui (mpz[1], mpz[1], 1000000); + int us = mpz_get_ui (mpz[1]); +#endif + + /* mpz[0] = floor (mpz[0] / (1 << LO_TIME_BITS)), with LO = remainder. */ + unsigned long ulo = mpz_get_ui (mpz[0]); + if (mpz_sgn (mpz[0]) < 0) + ulo = -ulo; + int lo = ulo & ((1 << LO_TIME_BITS) - 1); + mpz_fdiv_q_2exp (mpz[0], mpz[0], LO_TIME_BITS); + + return list4 (make_integer_mpz (), make_fixnum (lo), + make_fixnum (us), make_fixnum (ps)); +} + +/* Set ROP to T. */ +static void +mpz_set_time (mpz_t rop, time_t t) +{ + if (EXPR_SIGNED (t)) + mpz_set_intmax (rop, t); + else + mpz_set_uintmax (rop, t); +} + +/* Store into mpz[0] a clock tick count for T, assuming a + TIMESPEC_HZ-frequency clock. Use mpz[1] as a temp. */ +static void +timespec_mpz (struct timespec t) +{ + /* mpz[0] = sec * TIMESPEC_HZ + nsec. */ + mpz_set_ui (mpz[0], t.tv_nsec); + mpz_set_time (mpz[1], t.tv_sec); + mpz_addmul_ui (mpz[0], mpz[1], TIMESPEC_HZ); +} + +/* Convert T to a Lisp integer counting TIMESPEC_HZ ticks. */ +static Lisp_Object +timespec_ticks (struct timespec t) +{ + /* For speed, use intmax_t arithmetic if it will do. */ + intmax_t accum; + if (FASTER_TIMEFNS + && !ckd_mul (&accum, t.tv_sec, TIMESPEC_HZ) + && !ckd_add (&accum, accum, t.tv_nsec)) + return make_int (accum); + + /* Fall back on bignum arithmetic. */ + timespec_mpz (t); + return make_integer_mpz (); +} + +/* Return greatest common divisor of positive A and B. */ +static EMACS_INT +emacs_gcd (EMACS_INT a, EMACS_INT b) +{ + for (EMACS_INT r; (r = a % b) != 0; a = b, b = r) + continue; + return b; +} + +/* Convert T to a Lisp integer counting HZ ticks, taking the floor. + Assume T is valid, but check HZ. */ +static Lisp_Object +ticks_hz_hz_ticks (struct ticks_hz t, Lisp_Object hz) +{ + /* The idea is to return the floor of ((T.ticks * HZ) / T.hz). */ + + /* For speed, just return T.ticks if T.hz == HZ. */ + if (FASTER_TIMEFNS && BASE_EQ (t.hz, hz)) + return t.ticks; + + /* Check HZ for validity. */ + if (FIXNUMP (hz)) + { + if (XFIXNUM (hz) <= 0) + invalid_hz (hz); + + /* Prefer non-bignum arithmetic to speed up common cases. */ + if (FASTER_TIMEFNS && FIXNUMP (t.hz)) + { + /* Reduce T.hz and HZ by their GCD, to avoid some intmax_t + overflows that would occur in T.ticks * HZ. */ + EMACS_INT ithz = XFIXNUM (t.hz), ihz = XFIXNUM (hz); + EMACS_INT d = emacs_gcd (ithz, ihz); + ithz /= d; + ihz /= d; + + if (FIXNUMP (t.ticks)) + { + intmax_t ticks; + if (!ckd_mul (&ticks, XFIXNUM (t.ticks), ihz)) + return make_int (ticks / ithz - (ticks % ithz < 0)); + } + + t.hz = make_fixnum (ithz); + hz = make_fixnum (ihz); + } + } + else if (! (BIGNUMP (hz) && 0 < mpz_sgn (*xbignum_val (hz)))) + invalid_hz (hz); + + /* Fall back on bignum arithmetic. */ + mpz_t const *zticks = bignum_integer (&mpz[0], t.ticks); + if (FASTER_TIMEFNS && FIXNUMP (hz) && XFIXNUM (hz) <= ULONG_MAX) + mpz_mul_ui (mpz[0], *zticks, XFIXNUM (hz)); + else + mpz_mul (mpz[0], *zticks, *bignum_integer (&mpz[1], hz)); + if (FASTER_TIMEFNS && FIXNUMP (t.hz) && XFIXNUM (t.hz) <= ULONG_MAX) + mpz_fdiv_q_ui (mpz[0], mpz[0], XFIXNUM (t.hz)); + else + mpz_fdiv_q (mpz[0], mpz[0], *bignum_integer (&mpz[1], t.hz)); + return make_integer_mpz (); +} + +/* Convert T to a Lisp integer counting seconds, taking the floor. */ +static Lisp_Object +ticks_hz_seconds (struct ticks_hz t) +{ + /* The idea is to return the floor of T.ticks / T.hz. */ + + if (!FASTER_TIMEFNS) + return ticks_hz_hz_ticks (t, make_fixnum (1)); + + /* For speed, use EMACS_INT arithmetic if it will do. */ + if (FIXNUMP (t.ticks) && FIXNUMP (t.hz)) + return make_fixnum (XFIXNUM (t.ticks) / XFIXNUM (t.hz) + - (XFIXNUM (t.ticks) % XFIXNUM (t.hz) < 0)); + + /* For speed, inline what ticks_hz_hz_ticks would do. */ + mpz_fdiv_q (mpz[0], + *bignum_integer (&mpz[0], t.ticks), + *bignum_integer (&mpz[1], t.hz)); + return make_integer_mpz (); +} + +/* Convert T to a Lisp timestamp. */ +Lisp_Object +make_lisp_time (struct timespec t) +{ + if (current_time_list) + { + time_t s = t.tv_sec; + int ns = t.tv_nsec; + return list4 (hi_time (s), lo_time (s), + make_fixnum (ns / 1000), make_fixnum (ns % 1000 * 1000)); + } + else + return timespec_to_lisp (t); +} + +/* Return (TICKS . HZ) for time T. */ +Lisp_Object +timespec_to_lisp (struct timespec t) +{ + return Fcons (timespec_ticks (t), timespec_hz); +} + +/* An (error number, C timestamp) pair. */ +struct err_time +{ + int err; + union c_time time; +}; + +/* From the time components HIGH, LOW, USEC and PSEC and the timestamp + resolution HZ, generate the corresponding time value in CFORM form. + HZ should be either 1, 1000000, or 1000000000000. + Return a (0, valid timestamp) pair if successful, an (error number, + unspecified timestamp) pair otherwise. */ +static struct err_time +decode_time_components (Lisp_Object high, Lisp_Object low, + Lisp_Object usec, Lisp_Object psec, + Lisp_Object hz, enum cform cform) +{ + if (!(FIXNUMP (usec) && FIXNUMP (psec))) + return (struct err_time) { .err = EINVAL }; + + EMACS_INT us = XFIXNUM (usec); + EMACS_INT ps = XFIXNUM (psec); + + /* Normalize out-of-range lower-order components by carrying + each overflow into the next higher-order component. */ + us += ps / 1000000 - (ps % 1000000 < 0); + EMACS_INT s_from_us_ps = us / 1000000 - (us % 1000000 < 0); + ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0); + us = us % 1000000 + 1000000 * (us % 1000000 < 0); + + if (FASTER_TIMEFNS && FIXNUMP (high) && FIXNUMP (low)) + { + /* Use intmax_t arithmetic if the tick count fits. */ + intmax_t iticks; + bool v = false; + v |= ckd_mul (&iticks, XFIXNUM (high), 1 << LO_TIME_BITS); + v |= ckd_add (&iticks, iticks, XFIXNUM (low) + s_from_us_ps); + if (!v) + { + if (cform == CFORM_TIMESPEC || cform == CFORM_SECS_ONLY) + return (struct err_time) { + .time = { + .ts = s_ns_to_timespec (iticks, us * 1000 + ps / 1000) + } + }; + + if (BASE_EQ (hz, trillion)) + { + int_fast64_t million = 1000000; + v |= ckd_mul (&iticks, iticks, TRILLION); + v |= ckd_add (&iticks, iticks, us * million + ps); + } + else if (BASE_EQ (hz, make_fixnum (1000000))) + { + v |= ckd_mul (&iticks, iticks, 1000000); + v |= ckd_add (&iticks, iticks, us); + } + + if (!v) + return (struct err_time) { + .time = decode_ticks_hz (make_int (iticks), hz, cform) + }; + } + } + + if (! (INTEGERP (high) && INTEGERP (low))) + return (struct err_time) { .err = EINVAL }; + + mpz_t *s = &mpz[1]; + mpz_set_intmax (*s, s_from_us_ps); + mpz_add (*s, *s, *bignum_integer (&mpz[0], low)); + mpz_addmul_ui (*s, *bignum_integer (&mpz[0], high), 1 << LO_TIME_BITS); + + if (BASE_EQ (hz, trillion)) + { + #if FASTER_TIMEFNS && TRILLION <= ULONG_MAX + unsigned long i = us; + mpz_set_ui (mpz[0], i * 1000000 + ps); + mpz_addmul_ui (mpz[0], *s, TRILLION); + #else + intmax_t i = us; + mpz_set_intmax (mpz[0], i * 1000000 + ps); + mpz_addmul (mpz[0], *s, ztrillion); + #endif + } + else if (BASE_EQ (hz, make_fixnum (1000000))) + { + mpz_set_ui (mpz[0], us); + mpz_addmul_ui (mpz[0], *s, 1000000); + } + else + mpz_swap (mpz[0], *s); + + Lisp_Object ticks = make_integer_mpz (); + return (struct err_time) { .time = decode_ticks_hz (ticks, hz, cform) }; +} + +/* Current time (seconds since epoch) in form CFORM. */ +static union c_time +current_time_in_cform (enum cform cform) +{ + struct timespec now = current_timespec (); + return ((FASTER_TIMEFNS + && (cform == CFORM_TIMESPEC || cform == CFORM_SECS_ONLY)) + ? (union c_time) {.ts = now} + : decode_ticks_hz (timespec_ticks (now), timespec_hz, cform)); +} + +/* Decode a Lisp timestamp SPECIFIED_TIME that represents a time. + + Return a (form, time) pair that is the form of SPECIFIED-TIME + and the resulting C timestamp in CFORM form. + If CFORM == CFORM_SECS_ONLY, ignore and do not validate any sub-second + components of an old-format SPECIFIED_TIME. + + Signal an error if unsuccessful. */ +static union c_time +decode_lisp_time (Lisp_Object specified_time, enum cform cform) +{ + /* specified_time is one of: + + nil + current time + NUMBER + that number of seconds + (A . B) ; A, B : integer, B>0 + A/B s + (A B C D) ; A, B : integer, C, D : fixnum + (A * 2**16 + B + C / 10**6 + D / 10**12) s + + The following specified_time forms are also supported, + for compatibility with older Emacs versions: + + (A B) + like (A B 0 0) + (A B . C) ; C : fixnum + like (A B C 0) + (A B C) + like (A B C 0) + */ + + if (NILP (specified_time)) + return current_time_in_cform (cform); + else if (CONSP (specified_time)) + { + Lisp_Object high = XCAR (specified_time); + Lisp_Object low = XCDR (specified_time); + Lisp_Object usec = make_fixnum (0); + Lisp_Object psec = make_fixnum (0); + if (CONSP (low)) + { + Lisp_Object hz = make_fixnum (1); + Lisp_Object low_tail = XCDR (low); + low = XCAR (low); + if (cform != CFORM_SECS_ONLY) + { + if (CONSP (low_tail)) + { + usec = XCAR (low_tail); + low_tail = XCDR (low_tail); + if (CONSP (low_tail)) + { + psec = XCAR (low_tail); + hz = trillion; + } + else + hz = make_fixnum (1000000); + } + else if (!NILP (low_tail)) + { + usec = low_tail; + hz = make_fixnum (1000000); + } + } + + struct err_time err_time + = decode_time_components (high, low, usec, psec, hz, cform); + if (err_time.err) + time_error (err_time.err); + return err_time.time; + } + else + { + /* (TICKS . HZ) */ + if (!(INTEGERP (high) && (FIXNUMP (low) ? XFIXNUM (low) > 0 + : !NILP (Fnatnump (low))))) + time_spec_invalid (); + return decode_ticks_hz (high, low, cform); + } + } + else if (INTEGERP (specified_time)) + return decode_ticks_hz (specified_time, make_fixnum (1), cform); + else if (FLOATP (specified_time)) + { + double d = XFLOAT_DATA (specified_time); + if (!isfinite (d)) + time_error (isnan (d) ? EDOM : EOVERFLOW); + return decode_float_time (d, cform); + } + else + time_spec_invalid (); +} + +/* Convert a non-float Lisp timestamp SPECIFIED_TIME to double. + Signal an error if unsuccessful. */ +double +float_time (Lisp_Object specified_time) +{ + return decode_lisp_time (specified_time, CFORM_DOUBLE).d; +} + +/* Convert (HIGH LOW USEC PSEC) to struct timespec. + Return a valid timestamp if successful, an invalid one otherwise. */ +struct timespec +list4_to_timespec (Lisp_Object high, Lisp_Object low, + Lisp_Object usec, Lisp_Object psec) +{ + struct err_time err_time + = decode_time_components (high, low, usec, psec, trillion, CFORM_TIMESPEC); + return err_time.err ? invalid_timespec () : err_time.time.ts; +} + +/* Decode a Lisp time value SPECIFIED_TIME that represents a time. + Discard any low-order (sub-ns) resolution. + If SPECIFIED_TIME is nil, use the current time. + Signal an error if SPECIFIED_TIME does not represent a timespec. */ +struct timespec +lisp_time_argument (Lisp_Object specified_time) +{ + struct timespec t = decode_lisp_time (specified_time, CFORM_TIMESPEC).ts; + if (! timespec_valid_p (t)) + time_overflow (); + return t; +} + +/* Like lisp_time_argument, except decode only the seconds part, and + do not check the subseconds part. */ +static time_t +lisp_seconds_argument (Lisp_Object specified_time) +{ + struct timespec t = decode_lisp_time (specified_time, CFORM_SECS_ONLY).ts; + if (! timespec_valid_p (t)) + time_overflow (); + return t.tv_sec; +} + +/* Return the sum of the Lisp integers A and B. + Subtract instead of adding if SUBTRACT. + This function is tuned for small B. */ +static Lisp_Object +lispint_arith (Lisp_Object a, Lisp_Object b, bool subtract) +{ + bool mpz_done = false; + + if (FASTER_TIMEFNS && FIXNUMP (b)) + { + if (BASE_EQ (b, make_fixnum (0))) + return a; + + /* For speed, use EMACS_INT arithmetic if it will do. */ + if (FIXNUMP (a)) + return make_int (subtract + ? XFIXNUM (a) - XFIXNUM (b) + : XFIXNUM (a) + XFIXNUM (b)); + + /* For speed, use mpz_add_ui/mpz_sub_ui if it will do. */ + if (eabs (XFIXNUM (b)) <= ULONG_MAX) + { + ((XFIXNUM (b) < 0) == subtract ? mpz_add_ui : mpz_sub_ui) + (mpz[0], *xbignum_val (a), eabs (XFIXNUM (b))); + mpz_done = true; + } + } + + /* Fall back on bignum arithmetic if necessary. */ + if (!mpz_done) + (subtract ? mpz_sub : mpz_add) (mpz[0], + *bignum_integer (&mpz[0], a), + *bignum_integer (&mpz[1], b)); + return make_integer_mpz (); +} + +/* Given Lisp operands A and B, add their values, and return the + result as a Lisp timestamp. Subtract instead of adding if SUBTRACT. */ +static Lisp_Object +time_arith (Lisp_Object a, Lisp_Object b, bool subtract) +{ + struct ticks_hz + ta = decode_lisp_time (a, CFORM_TICKS_HZ).th, + tb = decode_lisp_time (b, CFORM_TICKS_HZ).th; + Lisp_Object ticks, hz; + + if (FASTER_TIMEFNS && BASE_EQ (ta.hz, tb.hz)) + { + hz = ta.hz; + ticks = lispint_arith (ta.ticks, tb.ticks, subtract); + } + else + { + /* The plan is to decompose ta into na/da and tb into nb/db. + Start by computing da and db, their minimum (which will be + needed later) and the iticks temporary that will become + available once only their minimum is needed. */ + mpz_t const *da = bignum_integer (&mpz[1], ta.hz); + mpz_t const *db = bignum_integer (&mpz[2], tb.hz); + bool da_lt_db = mpz_cmp (*da, *db) < 0; + mpz_t const *hzmin = da_lt_db ? da : db; + mpz_t *iticks = &mpz[da_lt_db + 1]; + + /* The plan is to compute (na * (db/g) + nb * (da/g)) / lcm (da, db) + where g = gcd (da, db). Start by computing g. */ + mpz_t *g = &mpz[3]; + mpz_gcd (*g, *da, *db); + + /* fa = da/g, fb = db/g. */ + mpz_t *fa = &mpz[4], *fb = &mpz[3]; + mpz_divexact (*fa, *da, *g); + mpz_divexact (*fb, *db, *g); + + /* ihz = fa * db. This is equal to lcm (da, db). */ + mpz_t *ihz = &mpz[0]; + mpz_mul (*ihz, *fa, *db); + + /* iticks = (fb * na) OP (fa * nb), where OP is + or -. */ + mpz_t const *na = bignum_integer (iticks, ta.ticks); + mpz_mul (*iticks, *fb, *na); + mpz_t const *nb = bignum_integer (&mpz[3], tb.ticks); + (subtract ? mpz_submul : mpz_addmul) (*iticks, *fa, *nb); + + /* Normalize iticks/ihz by dividing both numerator and + denominator by ig = gcd (iticks, ihz). For speed, though, + skip this division if ihz = 1. */ + mpz_t *ig = &mpz[3]; + mpz_gcd (*ig, *iticks, *ihz); + if (!FASTER_TIMEFNS || mpz_cmp_ui (*ig, 1) > 0) + { + mpz_divexact (*iticks, *iticks, *ig); + mpz_divexact (*ihz, *ihz, *ig); + + /* However, if dividing the denominator by ig would cause the + denominator to become less than hzmin, rescale the denominator + upwards by multiplying the normalized numerator and denominator + so that the resulting denominator becomes at least hzmin. + This rescaling avoids returning a timestamp that is less precise + than both a and b. */ + if (!FASTER_TIMEFNS || mpz_cmp (*ihz, *hzmin) < 0) + { + /* Rescale straightforwardly. Although this might not + yield the minimal denominator that preserves numeric + value and is at least hzmin, calculating such a + denominator would be too expensive because it would + require testing multisets of factors of lcm (da, db). */ + mpz_t *rescale = &mpz[3]; + mpz_cdiv_q (*rescale, *hzmin, *ihz); + mpz_mul (*iticks, *iticks, *rescale); + mpz_mul (*ihz, *ihz, *rescale); + } + } + + /* mpz[0] and iticks now correspond to the (HZ . TICKS) pair. */ + hz = make_integer_mpz (); + mpz_swap (mpz[0], *iticks); + ticks = make_integer_mpz (); + } + + /* Return an integer if the timestamp resolution is 1, + otherwise the (TICKS . HZ) form if !current_time_list or if + either input used (TICKS . HZ) form or the result can't be expressed + exactly in (HI LO US PS) form, otherwise the (HI LO US PS) form + for backward compatibility. */ + return (BASE_EQ (hz, make_fixnum (1)) + ? ticks + : (!current_time_list + || (CONSP (a) && !CONSP (XCDR (a))) + || (CONSP (b) && !CONSP (XCDR (b))) + || !trillion_factor (hz)) + ? Fcons (ticks, hz) + : ticks_hz_list4 (ticks, hz)); +} + +DEFUN ("time-add", Ftime_add, Stime_add, 2, 2, 0, + doc: /* Return the sum of two time values A and B, as a time value. +See `format-time-string' for the various forms of a time value. +For example, nil stands for the current time. */) + (Lisp_Object a, Lisp_Object b) +{ + return time_arith (a, b, false); +} + +DEFUN ("time-subtract", Ftime_subtract, Stime_subtract, 2, 2, 0, + doc: /* Return the difference between two time values A and B, as a time value. +You can use `float-time' to convert the difference into elapsed seconds. +See `format-time-string' for the various forms of a time value. +For example, nil stands for the current time. */) + (Lisp_Object a, Lisp_Object b) +{ + /* Subtract nil from nil correctly, and handle other eq values + quicker while we're at it. This means (time-subtract X X) does + not signal an error if X is not a valid time value, but that's OK. */ + if (BASE_EQ (a, b)) + return make_lisp_time ((struct timespec) {0}); + + return time_arith (a, b, true); +} + +/* Return negative, 0, positive if A < B, A == B, A > B respectively. + A and B should be Lisp time values. */ +static EMACS_INT +time_cmp (Lisp_Object a, Lisp_Object b) +{ + /* Compare nil to nil correctly, and handle other eq values quicker + while we're at it. This means (time-equal-p X X) does not signal + an error if X is not a valid time value, but that's OK. */ + if (BASE_EQ (a, b)) + return 0; + + /* Compare (X . Z) to (Y . Z) quickly if X and Y are fixnums. + Do not inspect Z, as it is OK to not signal if A and B are invalid. + Also, compare X to Y quickly if X and Y are fixnums. */ + if (FASTER_TIMEFNS) + { + Lisp_Object x = a, y = b; + if (CONSP (a) && CONSP (b) && BASE_EQ (XCDR (a), XCDR (b))) + x = XCAR (a), y = XCAR (b); + if (FIXNUMP (x) && FIXNUMP (y)) + return XFIXNUM (x) - XFIXNUM (y); + } + + /* Compare (ATICKS . AZ) to (BTICKS . BHZ) by comparing + ATICKS * BHZ to BTICKS * AHZ. */ + struct ticks_hz ta = decode_lisp_time (a, CFORM_TICKS_HZ).th; + struct ticks_hz tb = decode_lisp_time (b, CFORM_TICKS_HZ).th; + mpz_t const *za = bignum_integer (&mpz[0], ta.ticks); + mpz_t const *zb = bignum_integer (&mpz[1], tb.ticks); + if (! (FASTER_TIMEFNS && BASE_EQ (ta.hz, tb.hz))) + { + /* This could be sped up by looking at the signs, sizes, and + number of bits of the two sides; see how GMP does mpq_cmp. + It may not be worth the trouble here, though. */ + mpz_mul (mpz[0], *za, *bignum_integer (&mpz[2], tb.hz)); + mpz_mul (mpz[1], *zb, *bignum_integer (&mpz[2], ta.hz)); + za = &mpz[0]; + zb = &mpz[1]; + } + return mpz_cmp (*za, *zb); +} + +DEFUN ("time-less-p", Ftime_less_p, Stime_less_p, 2, 2, 0, + doc: /* Return non-nil if time value A is less than time value B. +See `format-time-string' for the various forms of a time value. +For example, nil stands for the current time. */) + (Lisp_Object a, Lisp_Object b) +{ + return time_cmp (a, b) < 0 ? Qt : Qnil; +} + +DEFUN ("time-equal-p", Ftime_equal_p, Stime_equal_p, 2, 2, 0, + doc: /* Return non-nil if A and B are equal time values. +See `format-time-string' for the various forms of a time value. */) + (Lisp_Object a, Lisp_Object b) +{ + /* A nil arg compares unequal to a non-nil arg. This also saves the + expense of current_timespec if either arg is nil. */ + return NILP (a) == NILP (b) && time_cmp (a, b) == 0 ? Qt : Qnil; +} + + +DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0, + doc: /* Return the current time, as a float number of seconds since the epoch. +If SPECIFIED-TIME is given, it is a time value to convert to float +instead of the current time. See `format-time-string' for the various +forms of a time value. + +WARNING: Since the result is floating point, it may not be exact. +If precise time stamps are required, use either `time-convert', +or (if you need time as a string) `format-time-string'. */) + (Lisp_Object specified_time) +{ + return (FLOATP (specified_time) ? specified_time + : make_float (float_time (specified_time))); +} + +/* Write information into buffer S of size MAXSIZE, according to the + FORMAT of length FORMAT_LEN, using time information taken from *TP. + Use the time zone specified by TZ. + Use NS as the number of nanoseconds in the %N directive. + Return the number of bytes written, not including the terminating + '\0'. If S is NULL, nothing will be written anywhere; so to + determine how many bytes would be written, use NULL for S and + ((size_t) -1) for MAXSIZE. + + This function behaves like nstrftime, except it allows null + bytes in FORMAT. */ +static size_t +emacs_nmemftime (char *s, size_t maxsize, const char *format, + size_t format_len, const struct tm *tp, timezone_t tz, int ns) +{ + int saved_errno = errno; + size_t total = 0; + + /* Loop through all the null-terminated strings in the format + argument. Normally there's just one null-terminated string, but + there can be arbitrarily many, concatenated together, if the + format contains '\0' bytes. nstrftime stops at the first + '\0' byte so we must invoke it separately for each such string. */ + for (;;) + { + errno = 0; + size_t result = nstrftime (s, maxsize, format, tp, tz, ns); + if (result == 0 && errno != 0) + return result; + if (s) + s += result + 1; + + maxsize -= result + 1; + total += result; + size_t len = strlen (format); + if (len == format_len) + break; + total++; + format += len + 1; + format_len -= len + 1; + } + + errno = saved_errno; + return total; +} + +static Lisp_Object +format_time_string (char const *format, ptrdiff_t formatlen, + struct timespec t, Lisp_Object zone, struct tm *tmp) +{ + char buffer[4000]; + char *buf = buffer; + ptrdiff_t size = sizeof buffer; + size_t len; + int ns = t.tv_nsec; + USE_SAFE_ALLOCA; + + timezone_t tz = tzlookup (zone, false); + /* On some systems, like 32-bit MinGW, tv_sec of struct timespec is + a 64-bit type, but time_t is a 32-bit type. emacs_localtime_rz + expects a pointer to time_t value. */ + time_t tsec = t.tv_sec; + tmp = emacs_localtime_rz (tz, &tsec, tmp); + if (! tmp) + { + int localtime_errno = errno; + xtzfree (tz); + time_error (localtime_errno); + } + synchronize_system_time_locale (); + + while (true) + { + errno = 0; + len = emacs_nmemftime (buf, size, format, formatlen, tmp, tz, ns); + if (len != 0 || errno == 0) + break; + eassert (errno == ERANGE); + + /* Buffer was too small, so make it bigger and try again. */ + len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tmp, tz, ns); + if (STRING_BYTES_BOUND <= len) + { + xtzfree (tz); + string_overflow (); + } + size = len + 1; + buf = SAFE_ALLOCA (size); + } + + xtzfree (tz); + AUTO_STRING_WITH_LEN (bufstring, buf, len); + Lisp_Object result = code_convert_string_norecord (bufstring, + Vlocale_coding_system, 0); + SAFE_FREE (); + return result; +} + +DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0, + doc: /* Use FORMAT-STRING to format the time value TIME. +A time value that is omitted or nil stands for the current time, +a number stands for that many seconds, an integer pair (TICKS . HZ) +stands for TICKS/HZ seconds, and an integer list (HI LO US PS) stands +for HI*2**16 + LO + US/10**6 + PS/10**12 seconds. This function +treats seconds as time since the epoch of 1970-01-01 00:00:00 UTC. + +The optional ZONE is omitted or nil for Emacs local time, t for +Universal Time, `wall' for system wall clock time, or a string as in +the TZ environment variable. It can also be a list (as from +`current-time-zone') or an integer (as from `decode-time') applied +without consideration for daylight saving time. + +The value is a copy of FORMAT-STRING, but with certain constructs replaced +by text that describes the specified date and time in TIME: + +%Y is the year, %y year without century, %C the century. +%G is the year corresponding to the ISO week, %g year corresponding + to the ISO week, without century. +%m is the numeric month. +%b and %h are the locale's abbreviated month name, %B the full name. + (%h is not supported on MS-Windows.) +%d is the day of the month, zero-padded, %e is blank-padded. +%u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6. +%a is the locale's abbreviated name of the day of week, %A the full name. +%U is the week number starting on Sunday, %W starting on Monday, + %V the week number according to ISO 8601. +%j is the day of the year. + +%H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H + only blank-padded, %l is like %I blank-padded. +%p is the locale's equivalent of either AM or PM. +%q is the calendar quarter (1–4). +%M is the minute (00-59). +%S is the second (00-59; 00-60 on platforms with leap seconds) +%s is the number of seconds since 1970-01-01 00:00:00 +0000. +%N is the nanosecond, %6N the microsecond, %3N the millisecond, etc. +%Z is the time zone abbreviation, %z is the numeric form. + +%c is the locale's date and time format. +%x is the locale's "preferred" date format. +%D is like "%m/%d/%y". +%F is the ISO 8601 date format (like "%+4Y-%m-%d"). + +%R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p". +%X is the locale's "preferred" time format. + +Finally, %n is a newline, %t is a tab, %% is a literal %, and +unrecognized %-sequences stand for themselves. + +A %-sequence can contain optional flags, field width, and a modifier +(in that order) after the `%'. The flags are: + +`-' Do not pad the field. +`_' Pad with spaces. +`0' Pad with zeros. +`+' Pad with zeros and put `+' before nonnegative year numbers with >4 digits. +`^' Use upper case characters if possible. +`#' Use opposite case characters if possible. + +A field width N is an unsigned decimal integer with a leading digit +nonzero. %NX is like %X, but takes up at least N positions. The +field width is (on GNU/Linux and some other systems) in measured in +bytes, not characters. It depends on the locale what the width (in +characters) %NX will end up being, especially when there are non-ASCII +characters in %X. + +The modifiers are: + +`E' Use the locale's alternative version. +`O' Use the locale's number symbols. + +For example, to produce full ISO 8601 format, use "%FT%T%z". + +usage: (format-time-string FORMAT-STRING &optional TIME ZONE) */) + (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object zone) +{ + struct timespec t = lisp_time_argument (timeval); + struct tm tm; + + CHECK_STRING (format_string); + format_string = code_convert_string_norecord (format_string, + Vlocale_coding_system, 1); + return format_time_string (SSDATA (format_string), SBYTES (format_string), + t, zone, &tm); +} + +DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 3, 0, + doc: /* Decode a timestamp into (SEC MINUTE HOUR DAY MONTH YEAR DOW DST UTCOFF). +The optional TIME is the time value to convert. See +`format-time-string' for the various forms of a time value. + +The optional ZONE is omitted or nil for Emacs local time, t for +Universal Time, `wall' for system wall clock time, or a string as in +the TZ environment variable. It can also be a list (as from +`current-time-zone') or an integer (the UTC offset in seconds) applied +without consideration for daylight saving time. + +The optional FORM specifies the form of the SEC member. If `integer', +SEC is an integer; if t, SEC is an integer or (TICKS . HZ) timestamp +with the same precision as TIME. An omitted or nil FORM is currently +treated like `integer', but this may change in future Emacs versions. + +To access (or alter) the elements in the time value, the +`decoded-time-second', `decoded-time-minute', `decoded-time-hour', +`decoded-time-day', `decoded-time-month', `decoded-time-year', +`decoded-time-weekday', `decoded-time-dst' and `decoded-time-zone' +accessors can be used. + +The list has the following nine members: SEC is an integer or +Lisp timestamp representing a nonnegative value less than 60 +\(or less than 61 if the operating system supports leap seconds). +MINUTE is an integer between 0 and 59. HOUR is an integer +between 0 and 23. DAY is an integer between 1 and 31. MONTH is an +integer between 1 and 12. YEAR is the year number, an integer; 0 +represents 1 BC. DOW is the day of week, an integer between 0 and 6, +where 0 is Sunday. DST is t if daylight saving time is in effect, +nil if it is not in effect, and -1 if daylight saving information is +not available. UTCOFF is an integer indicating the UTC offset in +seconds, i.e., the number of seconds east of Greenwich. (Note that +Common Lisp has different meanings for DOW and UTCOFF, and its +SEC is always an integer between 0 and 59.) + +usage: (decode-time &optional TIME ZONE FORM) */) + (Lisp_Object specified_time, Lisp_Object zone, Lisp_Object form) +{ + /* Convert SPECIFIED_TIME to TIME_SPEC and HZ; + if HZ != 1 also set TH.ticks. */ + time_t time_spec; + Lisp_Object hz; + struct ticks_hz th UNINIT; + if (EQ (form, Qt)) + { + th = decode_lisp_time (specified_time, CFORM_TICKS_HZ).th; + struct timespec ts = ticks_hz_to_timespec (th.ticks, th.hz); + if (! timespec_valid_p (ts)) + time_overflow (); + time_spec = ts.tv_sec; + hz = th.hz; + } + else + { + time_spec = lisp_seconds_argument (specified_time); + hz = make_fixnum (1); + } + + /* Compute broken-down local time LOCAL_TM from TIME_SPEC and ZONE. */ + struct tm local_tm, gmt_tm; + timezone_t tz = tzlookup (zone, false); + struct tm *tm = emacs_localtime_rz (tz, &time_spec, &local_tm); + int localtime_errno = errno; + xtzfree (tz); + + if (!tm) + time_error (localtime_errno); + + /* Let YEAR = LOCAL_TM.tm_year + TM_YEAR_BASE. */ + Lisp_Object year; + if (FASTER_TIMEFNS + && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= local_tm.tm_year + && local_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE) + { + /* Avoid overflow when INT_MAX - TM_YEAR_BASE < local_tm.tm_year. */ + EMACS_INT tm_year_base = TM_YEAR_BASE; + year = make_fixnum (local_tm.tm_year + tm_year_base); + } + else + { + mpz_set_si (mpz[0], local_tm.tm_year); + mpz_add_ui (mpz[0], mpz[0], TM_YEAR_BASE); + year = make_integer_mpz (); + } + + /* Compute SEC from LOCAL_TM.tm_sec and HZ. */ + Lisp_Object sec; + if (BASE_EQ (hz, make_fixnum (1))) + sec = make_fixnum (local_tm.tm_sec); + else + { + /* Let TICKS = HZ * LOCAL_TM.tm_sec + mod (TH.ticks, HZ) + and SEC = (TICKS . HZ). */ + Lisp_Object ticks; + intmax_t n; + if (FASTER_TIMEFNS && FIXNUMP (th.ticks) && FIXNUMP (hz) + && !ckd_mul (&n, XFIXNUM (hz), local_tm.tm_sec) + && !ckd_add (&n, n, (XFIXNUM (th.ticks) % XFIXNUM (hz) + + (XFIXNUM (th.ticks) % XFIXNUM (hz) < 0 + ? XFIXNUM (hz) : 0)))) + ticks = make_int (n); + else + { + mpz_fdiv_r (mpz[0], + *bignum_integer (&mpz[0], th.ticks), + *bignum_integer (&mpz[1], hz)); + mpz_addmul_ui (mpz[0], *bignum_integer (&mpz[1], hz), + local_tm.tm_sec); + ticks = make_integer_mpz (); + } + sec = Fcons (ticks, hz); + } + + return CALLN (Flist, + sec, + make_fixnum (local_tm.tm_min), + make_fixnum (local_tm.tm_hour), + make_fixnum (local_tm.tm_mday), + make_fixnum (local_tm.tm_mon + 1), + year, + make_fixnum (local_tm.tm_wday), + (local_tm.tm_isdst < 0 ? make_fixnum (-1) + : local_tm.tm_isdst == 0 ? Qnil : Qt), + (HAVE_TM_GMTOFF + ? make_fixnum (tm_gmtoff (&local_tm)) + : gmtime_r (&time_spec, &gmt_tm) + ? make_fixnum (tm_diff (&local_tm, &gmt_tm)) + : Qnil)); +} + +/* Return OBJ - OFFSET, checking that OBJ is a valid integer and that + the result is representable as an int. 0 <= OFFSET <= TM_YEAR_BASE. */ +static int +check_tm_member (Lisp_Object obj, int offset) +{ + if (FASTER_TIMEFNS && INT_MAX <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE) + { + CHECK_FIXNUM (obj); + EMACS_INT n = XFIXNUM (obj); + int i; + if (ckd_sub (&i, n, offset)) + time_overflow (); + return i; + } + else + { + CHECK_INTEGER (obj); + mpz_sub_ui (mpz[0], *bignum_integer (&mpz[0], obj), offset); + if (!mpz_fits_sint_p (mpz[0])) + time_overflow (); + return mpz_get_si (mpz[0]); + } +} + +DEFUN ("encode-time", Fencode_time, Sencode_time, 1, MANY, 0, + doc: /* Convert TIME to a timestamp. + +TIME is a list (SECOND MINUTE HOUR DAY MONTH YEAR IGNORED DST ZONE) +in the style of `decode-time', so that (encode-time (decode-time ...)) works. +In this list, ZONE can be nil for Emacs local time, t for Universal +Time, `wall' for system wall clock time, or a string as in the TZ +environment variable. ZONE can also be a list (as from +`current-time-zone') or an integer (as from `decode-time') applied +without consideration for daylight saving time. If ZONE specifies a +time zone with daylight-saving transitions, DST is t for daylight +saving time, nil for standard time, and -1 to cause the daylight +saving flag to be guessed. + +TIME can also be a list (SECOND MINUTE HOUR DAY MONTH YEAR), which is +equivalent to (SECOND MINUTE HOUR DAY MONTH YEAR nil -1 nil). + +As an obsolescent calling convention, if this function is called with +6 or more arguments, the first 6 arguments are SECOND, MINUTE, HOUR, +DAY, MONTH, and YEAR, and specify the components of a decoded time. +If there are more than 6 arguments the *last* argument is used as ZONE +and any other extra arguments are ignored, so that (apply +#\\='encode-time (decode-time ...)) works. In this obsolescent +convention, DST is -1 and ZONE defaults to nil. + +The range of supported years is at least 1970 to the near future. +Out-of-range values for SECOND through MONTH are brought into range +via date arithmetic. This can be tricky especially when combined with +DST; see Info node `(elisp)Time Conversion' for details and caveats. + +usage: (encode-time TIME &rest OBSOLESCENT-ARGUMENTS) */) + (ptrdiff_t nargs, Lisp_Object *args) +{ + struct tm tm; + Lisp_Object zone = Qnil; + Lisp_Object a = args[0]; + Lisp_Object secarg, minarg, hourarg, mdayarg, monarg, yeararg; + tm.tm_isdst = -1; + + if (nargs == 1) + { + Lisp_Object tail = a; + for (int i = 0; i < 6; i++, tail = XCDR (tail)) + CHECK_CONS (tail); + secarg = XCAR (a); a = XCDR (a); + minarg = XCAR (a); a = XCDR (a); + hourarg = XCAR (a); a = XCDR (a); + mdayarg = XCAR (a); a = XCDR (a); + monarg = XCAR (a); a = XCDR (a); + yeararg = XCAR (a); a = XCDR (a); + if (! NILP (a)) + { + CHECK_CONS (a); + a = XCDR (a); + CHECK_CONS (a); + Lisp_Object dstflag = XCAR (a); a = XCDR (a); + CHECK_CONS (a); + zone = XCAR (a); + if (SYMBOLP (dstflag) && !FIXNUMP (zone) && !CONSP (zone)) + tm.tm_isdst = !NILP (dstflag); + } + } + else if (nargs < 6) + xsignal2 (Qwrong_number_of_arguments, Qencode_time, make_fixnum (nargs)); + else + { + if (6 < nargs) + zone = args[nargs - 1]; + secarg = a; + minarg = args[1]; + hourarg = args[2]; + mdayarg = args[3]; + monarg = args[4]; + yeararg = args[5]; + } + + /* Let SEC = floor (TH.ticks / HZ), with SUBSECTICKS the remainder. */ + struct ticks_hz th = decode_lisp_time (secarg, CFORM_TICKS_HZ).th; + Lisp_Object hz = th.hz, sec, subsecticks; + if (FASTER_TIMEFNS && BASE_EQ (hz, make_fixnum (1))) + { + sec = th.ticks; + subsecticks = make_fixnum (0); + } + else + { + mpz_fdiv_qr (mpz[0], mpz[1], + *bignum_integer (&mpz[0], th.ticks), + *bignum_integer (&mpz[1], hz)); + sec = make_integer_mpz (); + mpz_swap (mpz[0], mpz[1]); + subsecticks = make_integer_mpz (); + } + tm.tm_sec = check_tm_member (sec, 0); + tm.tm_min = check_tm_member (minarg, 0); + tm.tm_hour = check_tm_member (hourarg, 0); + tm.tm_mday = check_tm_member (mdayarg, 0); + tm.tm_mon = check_tm_member (monarg, 1); + tm.tm_year = check_tm_member (yeararg, TM_YEAR_BASE); + + timezone_t tz = tzlookup (zone, false); + tm.tm_wday = -1; + time_t value = mktime_z (tz, &tm); + int mktime_errno = errno; + xtzfree (tz); + + if (tm.tm_wday < 0) + time_error (mktime_errno); + + if (BASE_EQ (hz, make_fixnum (1))) + return (current_time_list + ? list2 (hi_time (value), lo_time (value)) + : INT_TO_INTEGER (value)); + else + { + struct ticks_hz val1 = { INT_TO_INTEGER (value), make_fixnum (1) }; + Lisp_Object secticks = ticks_hz_hz_ticks (val1, hz); + Lisp_Object ticks = lispint_arith (secticks, subsecticks, false); + return Fcons (ticks, hz); + } +} + +DEFUN ("time-convert", Ftime_convert, Stime_convert, 1, 2, 0, + doc: /* Convert TIME value to a Lisp timestamp of the given FORM. +Truncate the returned value toward minus infinity. + +If FORM is a positive integer, return a pair of integers (TICKS . FORM), +where TICKS is the number of clock ticks and FORM is the clock frequency +in ticks per second. + +If FORM is t, return (TICKS . PHZ), where PHZ is a suitable clock +frequency in ticks per second. + +If FORM is `integer', return an integer count of seconds. + +If FORM is `list', return an integer list (HIGH LOW USEC PSEC), where +HIGH has the most significant bits of the seconds, LOW has the least +significant 16 bits, and USEC and PSEC are the microsecond and +picosecond counts. + +If FORM is nil, the behavior depends on `current-time-list', +but new code should not rely on it. */) + (Lisp_Object time, Lisp_Object form) +{ + /* FIXME: Any reason why we don't offer a `float` output format option as + well, since we accept it as input? */ + struct ticks_hz t = decode_lisp_time (time, CFORM_TICKS_HZ).th; + form = (!NILP (form) ? maybe_remove_pos_from_symbol (form) + : current_time_list ? Qlist : Qt); + if (BASE_EQ (form, Qlist)) + return ticks_hz_list4 (t.ticks, t.hz); + if (BASE_EQ (form, Qinteger)) + return FASTER_TIMEFNS && INTEGERP (time) ? time : ticks_hz_seconds (t); + if (BASE_EQ (form, Qt)) + form = t.hz; + if (FASTER_TIMEFNS && CONSP (time) && BASE_EQ (form, XCDR (time))) + return time; + return Fcons (ticks_hz_hz_ticks (t, form), form); +} + +DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0, + doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00. +If the variable `current-time-list' is nil, the time is returned as a +pair of integers (TICKS . HZ), where TICKS counts clock ticks and HZ +is the clock ticks per second. Otherwise, the time is returned as a +list of integers (HIGH LOW USEC PSEC) where HIGH has the most +significant bits of the seconds, LOW has the least significant 16 +bits, and USEC and PSEC are the microsecond and picosecond counts. + +You can use `time-convert' to get a particular timestamp form +regardless of the value of `current-time-list'. */) + (void) +{ + return make_lisp_time (current_timespec ()); +} + +#ifdef CLOCKS_PER_SEC +DEFUN ("current-cpu-time", Fcurrent_cpu_time, Scurrent_cpu_time, 0, 0, 0, + doc: /* Return the current CPU time along with its resolution. +The return value is a pair (CPU-TICKS . TICKS-PER-SEC). +The CPU-TICKS counter can wrap around, so values cannot be meaningfully +compared if too much time has passed between them. */) + (void) +{ + return Fcons (make_int (clock ()), make_int (CLOCKS_PER_SEC)); +} +#endif + +DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, + 0, 2, 0, + doc: /* Return the current local time, as a human-readable string. +Programs can use this function to decode a time, +since the number of columns in each field is fixed +if the year is in the range 1000-9999. +The format is `Sun Sep 16 01:03:52 1973'. +However, see also the functions `decode-time' and `format-time-string' +which provide a much more powerful and general facility. + +If SPECIFIED-TIME is given, it is the time value to format instead of +the current time. See `format-time-string' for the various forms of a +time value. + +The optional ZONE is omitted or nil for Emacs local time, t for +Universal Time, `wall' for system wall clock time, or a string as in +the TZ environment variable. It can also be a list (as from +`current-time-zone') or an integer (as from `decode-time') applied +without consideration for daylight saving time. */) + (Lisp_Object specified_time, Lisp_Object zone) +{ + time_t value = lisp_seconds_argument (specified_time); + timezone_t tz = tzlookup (zone, false); + + /* Convert to a string in ctime format, except without the trailing + newline, and without the 4-digit year limit. Don't use asctime + or ctime, as they might dump core if the year is outside the + range -999 .. 9999. */ + struct tm tm; + struct tm *tmp = emacs_localtime_rz (tz, &value, &tm); + int localtime_errno = errno; + xtzfree (tz); + if (! tmp) + time_error (localtime_errno); + + static char const wday_name[][4] = + { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" }; + static char const mon_name[][4] = + { "Jan", "Feb", "Mar", "Apr", "May", "Jun", + "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; + intmax_t year_base = TM_YEAR_BASE; + char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1]; + int len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"PRIdMAX, + wday_name[tm.tm_wday], mon_name[tm.tm_mon], tm.tm_mday, + tm.tm_hour, tm.tm_min, tm.tm_sec, + tm.tm_year + year_base); + + return make_unibyte_string (buf, len); +} + +DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 2, 0, + doc: /* Return the offset and name for the local time zone. +This returns a list of the form (OFFSET NAME). +OFFSET is an integer number of seconds ahead of UTC (east of Greenwich). + A negative value means west of Greenwich. +NAME is a string giving the name of the time zone. +If SPECIFIED-TIME is given, the time zone offset is determined from it +instead of using the current time. The argument should be a Lisp +time value; see `format-time-string' for the various forms of a time +value. + +The optional ZONE is omitted or nil for Emacs local time, t for +Universal Time, `wall' for system wall clock time, or a string as in +the TZ environment variable. It can also be a list (as from +`current-time-zone') or an integer (as from `decode-time') applied +without consideration for daylight saving time. + +Some operating systems cannot provide all this information to Emacs; +in this case, `current-time-zone' returns a list containing nil for +the data it can't find. */) + (Lisp_Object specified_time, Lisp_Object zone) +{ + struct timespec value; + struct tm local_tm, gmt_tm; + Lisp_Object zone_offset, zone_name; + + zone_offset = Qnil; + value = make_timespec (lisp_seconds_argument (specified_time), 0); + zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value, + zone, &local_tm); + + /* gmtime_r expects a pointer to time_t, but tv_sec of struct + timespec on some systems (MinGW) is a 64-bit field. */ + time_t tsec = value.tv_sec; + if (HAVE_TM_GMTOFF || gmtime_r (&tsec, &gmt_tm)) + { + long int offset = (HAVE_TM_GMTOFF + ? tm_gmtoff (&local_tm) + : tm_diff (&local_tm, &gmt_tm)); + zone_offset = make_fixnum (offset); + if (SCHARS (zone_name) == 0) + { + /* No local time zone name is available; use numeric zone instead. */ + long int hour = offset / 3600; + int min_sec = offset % 3600; + int amin_sec = min_sec < 0 ? - min_sec : min_sec; + int min = amin_sec / 60; + int sec = amin_sec % 60; + int min_prec = min_sec ? 2 : 0; + int sec_prec = sec ? 2 : 0; + char buf[sizeof "+0000" + INT_STRLEN_BOUND (long int)]; + zone_name = make_formatted_string (buf, "%c%.2ld%.*d%.*d", + (offset < 0 ? '-' : '+'), + hour, min_prec, min, sec_prec, sec); + } + } + + return list2 (zone_offset, zone_name); +} + +DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0, + doc: /* Set the Emacs local time zone using TZ, a string specifying a time zone rule. +If TZ is nil or `wall', use system wall clock time; this differs from +the usual Emacs convention where nil means current local time. If TZ +is t, use Universal Time. If TZ is a list (as from +`current-time-zone') or an integer (as from `decode-time'), use the +specified time zone without consideration for daylight saving time. + +Instead of calling this function, you typically want something else. +To temporarily use a different time zone rule for just one invocation +of `decode-time', `encode-time', or `format-time-string', pass the +function a ZONE argument. To change local time consistently +throughout Emacs, call (setenv "TZ" TZ): this changes both the +environment of the Emacs process and the variable +`process-environment', whereas `set-time-zone-rule' affects only the +former. */) + (Lisp_Object tz) +{ + tzlookup (NILP (tz) ? Qwall : tz, true); + return Qnil; +} + +/* A buffer holding a string of the form "TZ=value", intended + to be part of the environment. If TZ is supposed to be unset, + the buffer string is "tZ=". */ + static char *tzvalbuf; + +/* Get the local time zone rule. */ +char * +emacs_getenv_TZ (void) +{ + return tzvalbuf[0] == 'T' ? tzvalbuf + tzeqlen : 0; +} + +/* Set the local time zone rule to TZSTRING, which can be null to + denote wall clock time. Do not record the setting in LOCAL_TZ. + + This function is not thread-safe, in theory because putenv is not, + but mostly because of the static storage it updates. Other threads + that invoke localtime etc. may be adversely affected while this + function is executing. */ + +int +emacs_setenv_TZ (const char *tzstring) +{ + static ptrdiff_t tzvalbufsize; + ptrdiff_t tzstringlen = tzstring ? strlen (tzstring) : 0; + char *tzval = tzvalbuf; + bool new_tzvalbuf = tzvalbufsize <= tzeqlen + tzstringlen; + + if (new_tzvalbuf) + { + /* Do not attempt to free the old tzvalbuf, since another thread + may be using it. In practice, the first allocation is large + enough and memory does not leak. */ + tzval = xpalloc (NULL, &tzvalbufsize, + tzeqlen + tzstringlen - tzvalbufsize + 1, -1, 1); + tzvalbuf = tzval; + tzval[1] = 'Z'; + tzval[2] = '='; + } + + if (tzstring) + { + /* Modify TZVAL in place. Although this is dicey in a + multithreaded environment, we know of no portable alternative. + Calling putenv or setenv could crash some other thread. */ + tzval[0] = 'T'; + strcpy (tzval + tzeqlen, tzstring); + } + else + { + /* Turn 'TZ=whatever' into an empty environment variable 'tZ='. + Although this is also dicey, calling unsetenv here can crash Emacs. + See Bug#8705. */ + tzval[0] = 't'; + tzval[tzeqlen] = 0; + } + + +#ifndef WINDOWSNT + /* Modifying *TZVAL merely requires calling tzset (which is the + caller's responsibility). However, modifying TZVAL requires + calling putenv; although this is not thread-safe, in practice this + runs only on startup when there is only one thread. */ + bool need_putenv = new_tzvalbuf; +#else + /* MS-Windows 'putenv' copies the argument string into a block it + allocates, so modifying *TZVAL will not change the environment. + However, the other threads run by Emacs on MS-Windows never call + 'xputenv' or 'putenv' or 'unsetenv', so the original cause for the + dicey in-place modification technique doesn't exist there in the + first place. */ + bool need_putenv = true; +#endif + if (need_putenv) + xputenv (tzval); + + return 0; +} + +#ifdef NEED_ZTRILLION_INIT +static void +syms_of_timefns_for_pdumper (void) +{ + mpz_init_set_ui (ztrillion, 1000000); + mpz_mul_ui (ztrillion, ztrillion, 1000000); +} +#endif + +void +syms_of_timefns (void) +{ +#ifndef timespec_hz + timespec_hz = make_int (TIMESPEC_HZ); + staticpro (×pec_hz); +#endif +#ifndef trillion + trillion = make_int (1000000000000); + staticpro (&trillion); +#endif + + DEFSYM (Qencode_time, "encode-time"); + + DEFVAR_BOOL ("current-time-list", current_time_list, + doc: /* Whether `current-time' should return list or (TICKS . HZ) form. + +This boolean variable is a transition aid. If t, `current-time' and +related functions return timestamps in list form, typically +\(HIGH LOW USEC PSEC); otherwise, they use (TICKS . HZ) form. +Currently this variable defaults to t, for behavior compatible with +previous Emacs versions. Developers are encouraged to test +timestamp-related code with this variable set to nil, as it will +default to nil in a future Emacs version, and will be removed in some +version after that. */); + current_time_list = CURRENT_TIME_LIST; + + defsubr (&Scurrent_time); +#ifdef CLOCKS_PER_SEC + defsubr (&Scurrent_cpu_time); +#endif + defsubr (&Stime_convert); + defsubr (&Stime_add); + defsubr (&Stime_subtract); + defsubr (&Stime_less_p); + defsubr (&Stime_equal_p); + defsubr (&Sformat_time_string); + defsubr (&Sfloat_time); + defsubr (&Sdecode_time); + defsubr (&Sencode_time); + defsubr (&Scurrent_time_string); + defsubr (&Scurrent_time_zone); + defsubr (&Sset_time_zone_rule); + + flt_radix_power = make_nil_vector (flt_radix_power_size); + staticpro (&flt_radix_power); + +#ifdef NEED_ZTRILLION_INIT + pdumper_do_now_and_after_load (syms_of_timefns_for_pdumper); +#endif +} \ No newline at end of file diff --git a/src/timefns.rs b/src/timefns.rs index 47f4959..948de28 100644 --- a/src/timefns.rs +++ b/src/timefns.rs @@ -1,15 +1,30 @@ //! Time analysis use crate::core::{ env::{sym, Env}, + error::{Type, TypeError}, gc::{Context, Rt}, - object::Object, + object::{List, Object, ObjectType}, }; use rune_core::macros::list; -use rune_macros::defun; -use std::time::SystemTime; +use rune_macros::{defun, elprop}; +use std::time::{Duration, SystemTime}; defvar!(CURRENT_TIME_LIST, true); +const LO_TIME_BITS: u32 = 16; +const TIMESPEC_HZ: u64 = 1000000000; +const LOG10_TIMESPEC_HZ: u32 = 9; +const TRILLION: u64 = 1_000_000_000_000; + +// struct TicksHz { +// /* Clock count as a Lisp integer. */ +// Lisp_Object ticks; + +// /* Clock frequency (ticks per second) as a positive Lisp integer. */ +// Lisp_Object hz; + +// } + #[defun] fn current_time<'ob>(cx: &'ob Context, env: &Rt) -> Object<'ob> { assert!( @@ -20,10 +35,236 @@ fn current_time<'ob>(cx: &'ob Context, env: &Rt) -> Object<'ob> { .duration_since(SystemTime::UNIX_EPOCH) .expect("System time is before the epoch"); + make_lisp_time(cx, duration) +} + +fn make_lisp_time<'ob>(cx: &'ob Context, duration: Duration) -> Object<'ob> { let secs = duration.as_secs(); - let micros = duration.subsec_micros(); + let nanos = duration.subsec_nanos(); + let low = secs & 0xffff; - let high = secs >> 16; + let high = secs >> LO_TIME_BITS; + + let micros = nanos / 1000; + let picos = nanos % 1000 * 1000; + list![high, low, micros, picos; cx] +} + +// #[defun] +// fn time_add<'ob>(a: List<'ob>, b: List<'ob>) -> Result> { +// let [first, second, third, fourth] = a.elements().collect::, _>>()?[..] else { +// bail!("Invalid time list {a}") +// }; +// todo!() +// } + +// Decode a Lisp timestamp SPECIFIED_TIME that represents a time. +// +// Return a (form, time) pair that is the form of SPECIFIED-TIME +// and the resulting C timestamp in CFORM form. +// If CFORM == CFORM_SECS_ONLY, ignore and do not validate any sub-second +// components of an old-format SPECIFIED_TIME. +// +// Signal an error if unsuccessful. +// +// specified_time is one of: +// +// nil +// current time +// NUMBER +// that number of seconds +// (A . B) ; A, B : integer, B>0 +// A/B s +// (A B C D) ; A, B : integer, C, D : fixnum +// (A * 2**16 + B + C / 10**6 + D / 10**12) s +// +// The following specified_time forms are also supported, +// for compatibility with older Emacs versions: +// +// (A B) +// like (A B 0 0) +// (A B . C) ; C : fixnum +// like (A B C 0) +// (A B C) +// like (A B C 0) +#[derive(Debug, Clone, Copy)] +pub(crate) struct LispTime(Duration); + +impl<'ob> TryFrom> for LispTime { + type Error = TypeError; + + fn try_from(obj: Object<'ob>) -> Result { + let duration = match obj.untag() { + ObjectType::NIL => { + let duration = SystemTime::now() + .duration_since(SystemTime::UNIX_EPOCH) + .expect("System time is before the epoch"); + Ok(duration) + } + ObjectType::Cons(x) => { + let high = x.car(); + let low = x.cdr(); + let mut usec = ObjectType::Int(0); + let mut psec = ObjectType::Int(0); + let mut hz = 0; + + if let ObjectType::Cons(l) = low.untag() { + let low = l.car(); + let low_tail = l.cdr(); + + if let ObjectType::Cons(l) = low_tail.untag() { + usec = l.car().into(); + let low_tail = l.cdr(); + + if let ObjectType::Cons(l) = low_tail.untag() { + psec = l.car().into(); + hz = 1000000000000; + } else { + hz = 1000000; + } + } else if low_tail.is_nil() { + usec = low_tail.into(); + hz = 1000000; + } + decode_time_components(high.untag(), low.untag(), usec, psec, hz) + } else { + match (high.untag(), low.untag()) { + (ObjectType::Int(h), ObjectType::Int(l)) => { + Ok(ticks_hz_to_duration(h as u64, l as u64)) + } + _ => Err("".into()), + } + } + } + ObjectType::Int(x) => Ok(ticks_hz_to_duration(x as u64, 1)), + ObjectType::Float(x) => decode_float_time(**x), + _ => Err("".into()), + }; + + duration.map_err(|e| TypeError::new(Type::String, obj)).map(|d| LispTime(d)) + } +} + +fn ticks_hz_to_duration(ticks: u64, hz: u64) -> Duration { + if hz == TIMESPEC_HZ { + let mut secs = ticks / TIMESPEC_HZ; + let mut nanos = ticks % TIMESPEC_HZ; + if nanos < 0 { + secs -= 1; + nanos += TIMESPEC_HZ; + } + return Duration::new(secs, nanos as u32); + } else if hz == 1 { + return Duration::from_secs(ticks); + } else { + let q = ticks as u128 * TIMESPEC_HZ as u128 / hz as u128; + let nanos = q % TIMESPEC_HZ as u128; + let secs = q / TIMESPEC_HZ as u128; + return Duration::new(secs as u64, nanos as u32); + } +} - list![high, low, micros, 0; cx] +fn decode_float_time(t: f64) -> Result { + if t == 0.0 { + return Ok(ticks_hz_to_duration(0, 1)); + } + + let scale = double_integer_scale(t); + if scale < 0 { + return Err("Scale is negative, time too large".to_string()); + } + + let scaled = t * 2f64.powi(scale); + if scaled.fract() != 0.0 { + return Err("Scaled time is not an integer".to_string()); + } + + let ticks = scaled as u64; + let hz = if scale < 0 { 1 } else { 2u64.pow(scale as u32) }; + + let secs = ticks / hz; + let nanos = ((ticks % hz) as f64 * 1_000_000_000.0 / hz as f64) as u32; + + if nanos >= 1_000_000_000 { + return Err("Nanoseconds out of range".to_string()); + } + + Ok(Duration::new(secs, nanos)) +} + +fn double_integer_scale(d: f64) -> i32 { + if d == 0.0 || d.is_nan() || d.is_infinite() { + return 0; // Special case: scale is zero for zero, NaN, or infinity + } + + let mut e = 0; + let mut value = d.abs(); + + while value.fract() != 0.0 { + value *= f64::from(std::f32::RADIX); + e -= 1; + } + + while value % f64::from(std::f32::RADIX) == 0.0 && value > 1.0 { + value /= f64::from(std::f32::RADIX); + e += 1; + } + e +} + +fn decode_time_components<'ob>( + high: ObjectType<'ob>, + low: ObjectType<'ob>, + usec: ObjectType<'ob>, + psec: ObjectType<'ob>, + hz: u64, +) -> Result { + let elements = [high, low, usec, psec] + .iter() + .map(|e| { + if let ObjectType::Int(x) = e { + Ok::(*x) + } else { + Err("Invalid type".into()) + } + }) + .collect::, _>>()?; + if elements.len() != 4 { + return Err("Invalid types".into()); + } + let [high, low, mut us, mut ps] = [elements[0], elements[1], elements[2], elements[3]]; + + /* Normalize out-of-range lower-order components by carrying + each overflow into the next higher-order component. */ + us += ps / 1000000 - (if ps % 1000000 < 0 { 1 } else { 0 }); + let s_from_us_ps = us / 1000000 - (if us % 1000000 < 0 { 1 } else { 0 }); + ps = ps % 1000000 + if ps % 1000000 < 0 { 1000000 } else { 0 }; + us = us % 1000000 + if us % 1000000 < 0 { 1000000 } else { 0 }; + + let iticks = high * (1 << LO_TIME_BITS) + low + s_from_us_ps; + + if hz == TRILLION { + if iticks.checked_mul(TRILLION as i64).is_some() + && iticks.checked_add((us * 1000000 + ps) as i64).is_some() + { + let iticks = iticks * TRILLION as i64 + (us * 1000000 + ps) as i64; + return Ok(ticks_hz_to_duration(iticks as u64, hz)); + } + } else if hz == 1000000 { + if iticks.checked_mul(1000000).is_some() && iticks.checked_add(us).is_some() { + let iticks = iticks * 1000000 + us; + return Ok(ticks_hz_to_duration(iticks as u64, hz)); + } + } + return Ok(ticks_hz_to_duration(iticks as u64, hz)); +} + +#[defun] +#[elprop((usize, usize, usize, usize), (usize, usize, usize, usize))] +fn time_add<'ob>(a: LispTime, b: LispTime, cx: &'ob Context) -> Object<'ob> { + let c = a.0 + b.0; + // let c = SystemTime::now() + // .duration_since(SystemTime::UNIX_EPOCH) + // .expect("System time is before the epoch"); + make_lisp_time(cx, c) }