-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathlosses.py
175 lines (158 loc) · 7.26 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""
Implements the knowledge distillation loss
"""
import torch
import torch.nn as nn
from torch.nn import functional as F
from timm.models import create_model
def cross_entropy(outputs, teacher_outputs):
logprobs = F.log_softmax(outputs, dim=-1)
soft_targets = F.softmax(teacher_outputs, dim=-1)
distill_loss = -torch.sum(soft_targets * logprobs, dim=-1)
return distill_loss.mean()
def kl_div(outputs1, outputs2, T=1.):
return F.kl_div(
F.log_softmax(outputs1 / T, dim=1),
F.log_softmax(outputs2 / T, dim=1),
reduction='sum',
log_target=True
) * (T * T) / outputs1.numel()
class LabelSmoothingCrossEntropy(nn.Module):
"""
NLL loss with label smoothing.
"""
def __init__(self, smoothing=0.1):
"""
Constructor for the LabelSmoothing module.
:param smoothing: label smoothing factor
"""
super(LabelSmoothingCrossEntropy, self).__init__()
assert smoothing < 1.0
self.smoothing = smoothing
self.confidence = 1. - smoothing
def forward(self, x: torch.Tensor, target: torch.Tensor):
logprobs = F.log_softmax(x, dim=-1)
smooth_loss = -logprobs.mean(dim=-1)
if target.dim() == 1:
nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1))
nll_loss = nll_loss.squeeze(1)
else:
assert target.dim() == 2
nll_loss = -torch.sum(target * logprobs, dim=-1)
loss = self.confidence * nll_loss + self.smoothing * smooth_loss
return loss.mean()
class PretrainSentLoss(torch.nn.Module):
def __init__(self, base_criterion: torch.nn.Module, loss_type: str, args=None,
distill_type='none', alpha=0., beta=0., tau=0., set_training_mode=False):
super().__init__()
self.base_criterion = base_criterion
self.loss_type = loss_type
self.alpha = alpha
self.beta = beta
self.tau = tau
assert distill_type in ['none', 'feat', 'logits', 'logits_kl']
self.distill_type:str = distill_type
if beta > 0:
assert self.distill_type.startswith("logits")
teacher_model = args.teacher_model if args.teacher_model else args.model
self.teacher_model = create_model(
teacher_model,
pretrained=args.pretrained,
num_classes=args.nb_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=None,
dataset=None,
args=args
)
if args.teacher_path:
self.teacher_model.initialize_parameters(args.teacher_path)
device = torch.device(args.device)
self.teacher_model.to(device)
self.teacher_model.requires_grad_(False)
self.fp32 = args.fp32_resume
self.set_training_mode=set_training_mode
def forward(self, inputs, outputs, labels: torch.Tensor):
if isinstance(outputs, torch.Tensor):
loss = self.base_criterion(outputs, labels)
return loss
# assume that the model outputs a tuple of outputs
if self.alpha > 0.:
assert self.distill_type.startswith("feat")
# assume that the model outputs a tuple of [outputs1, outputs2, distill_loss]
outputs1, outputs2, distill_loss = outputs
distill_loss = torch.mean(distill_loss)
else:
# assume that the model outputs a tuple of [outputs1, outputs2]
outputs1, outputs2 = outputs
distill_loss = 0.
if self.loss_type in ["softCE", "smoothCE"]:
labels = labels / torch.sum(labels, dim=1, keepdim=True)
loss1 = self.base_criterion(outputs1, labels)
loss2 = self.base_criterion(outputs2, labels)
base_loss = (loss1 + loss2) / 2.0
loss = (1 - self.alpha) * base_loss + self.alpha * distill_loss
if self.beta > 0:
self.teacher_model.train(self.set_training_mode)
teacher_outputs1, teacher_outputs2 = self.teacher_model(inputs)
teacher_outputs1, teacher_outputs2 = teacher_outputs1.detach(), teacher_outputs2.detach()
if self.distill_type == 'logits_kl':
distill_loss1 = kl_div(outputs1, teacher_outputs1, T=self.tau)
distill_loss2 = kl_div(outputs2, teacher_outputs2, T=self.tau)
distill_loss = (distill_loss1 + distill_loss2) / 2.0
else:
assert self.distill_type == "logits"
distill_loss1 = cross_entropy(outputs1, teacher_outputs1)
distill_loss2 = cross_entropy(outputs2, teacher_outputs2)
distill_loss = (distill_loss1 + distill_loss2) / 2.0
loss = (1 - self.beta) * loss + self.beta * distill_loss
return loss, distill_loss
class DistillationLoss(torch.nn.Module):
"""
This module wraps a standard criterion and adds an extra knowledge distillation loss by
taking a teacher model prediction and using it as additional supervision.
"""
def __init__(self, base_criterion: torch.nn.Module, teacher_model: torch.nn.Module,
distillation_type: str, alpha: float, tau: float):
super().__init__()
self.base_criterion = base_criterion
self.teacher_model = teacher_model
assert distillation_type in ['none', 'soft', 'hard']
self.distillation_type = distillation_type
self.alpha = alpha
self.tau = tau
def forward(self, inputs, outputs, labels):
"""
Args:
inputs: The original inputs that are feed to the teacher model
outputs: the outputs of the model to be trained. It is expected to be
either a Tensor, or a Tuple[Tensor, Tensor], with the original output
in the first position and the distillation predictions as the second output
labels: the labels for the base criterion
"""
outputs_kd = None
if not isinstance(outputs, torch.Tensor):
# assume that the model outputs a tuple of [outputs, outputs_kd]
outputs, outputs_kd = outputs
base_loss = self.base_criterion(outputs, labels)
if self.distillation_type == 'none':
return base_loss
if outputs_kd is None:
raise ValueError("When knowledge distillation is enabled, the model is "
"expected to return a Tuple[Tensor, Tensor] with the output of the "
"class_token and the dist_token")
# don't backprop throught the teacher
with torch.no_grad():
teacher_outputs = self.teacher_model(inputs)
if self.distillation_type == 'soft':
T = self.tau
distillation_loss = F.kl_div(
F.log_softmax(outputs_kd / T, dim=1),
F.log_softmax(teacher_outputs / T, dim=1),
reduction='sum',
log_target=True
) * (T * T) / outputs_kd.numel()
elif self.distillation_type == 'hard':
distillation_loss = F.cross_entropy(outputs_kd, teacher_outputs.argmax(dim=1))
loss = base_loss * (1 - self.alpha) + distillation_loss * self.alpha
return loss