-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathag_probs.py
128 lines (93 loc) · 3.64 KB
/
ag_probs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
################################################################
### Code for probabilities for axion-photon conversion ###
### by Manuel A. Buen-Abad, 2020 ###
### and Chen Sun, 2020 ###
################################################################
from __future__ import division
import numpy as np
from numpy import pi, sqrt, log, log10, exp, power
from scipy.integrate import simps, quad
# CONSTANTS AND CONVERSION FACTORS:
c0 = 299792458. # [m/s] speed of light
aem = 1./137 # QED coupling constant
meeV = (0.51099895 * 1.e6) # [eV] electron mass
hbarc = 197.32698045930252e-18 # [GeV*cm]
GeV_over_eV = 1.e9 # GeV/eV
GeV_times_m = 1./hbarc # GeV*m conversion
eV_times_cm = GeV_times_m * 1.e-11 # eV*cm conversion
Mpc_over_m = 3.085677581282e22 # Mpc/m conversion
Mpc_times_GeV = GeV_times_m * Mpc_over_m # Mpc*GeV conversion
G_over_eV2 = 1.95e-2 # G/eV^2 conversion # MANUEL: NOTE: FIND MORE ACCURATE VALUE
Mpc_times_eV = Mpc_times_GeV/GeV_over_eV # Mpc*eV conversion
# FUNCTIONS:
def omega_plasma(ne):
"""
Plasma photon mass [eV].
ne : electron number density [cm^-3]
"""
ne_eV3 = ne*(eV_times_cm)**-3
omega2 = 4*pi*aem*ne_eV3 / meeV
return sqrt(omega2)
def Delta(g, B=1.):
"""
Delta parameter.
g : axion-photon coupling [GeV^-2]
B : magnetic field [nG] (default: 1.)
"""
g_ieV = (g/GeV_over_eV)
B_eV2 = (B*1.e-9) * G_over_eV2
return g_ieV*B_eV2
def q(ma, omega=1., mg=3.e-15):
"""
q parameter.
ma : axion mass [eV]
omega : photon energy [eV] (default: 1.)
mg : photon mass [eV] (default: 3.e-15)
"""
return (mg**2)*(1. - power(ma/mg, 2.))/omega
def k(ma, g, B=1., omega=1., mg=3.e-15):
"""
Oscillation wavenumber.
ma : axion mass [eV]
g : axion-photon coupling [GeV^-2]
B : magnetic field [nG] (default: 1.)
omega : photon energy [eV] (default: 1.)
mg : photon mass [eV] (default: 3.e-15)
"""
return sqrt( Delta(g, B=B)**2. + (q(ma, omega=omega, mg=mg)/2.)**2. )
def P0(ma, g, x, B=1., omega=1., mg=3.e-15, smoothed=False):
"""
Probability of axion-photon conversion in uniform magnetic field.
ma : axion mass [eV]
g : axion-photon coupling [GeV^-2]
x : distance traveled [Mpc]
B : magnetic field [nG] (default: 1.)
omega : photon energy [eV] (default: 1.)
mg : photon mass [eV] (default: 3.e-15)
smoothed : whether sin^2 in conversion probability is smoothed out [bool] (default: False)
"""
x_ieV = x*Mpc_times_eV
pref = (Delta(g, B=B)**2.) / (k(ma, g, B=B, omega=omega, mg=mg)**2.)
arg = (k(ma, g, B=B, omega=omega, mg=mg) * x_ieV)/2.
if not smoothed:
osc = np.sin(arg)**2
else:
osc = (1 - exp(-2*arg**2.))/2.
return pref * osc
def Pnaive(ma, g, y, s=1., B=1., omega=1., mg=3.e-15, axion_ini_frac=0., smoothed=False):
"""
Photon survival probability, in its naive (Grossman-Roy-Zupan) form.
ma : axion mass [eV]
g : axion-photon coupling [GeV^-2]
y : comoving distance traveled by the photons [Mpc]
s : magnetic domain size [Mpc] (default: 1.)
B : magnetic field [nG] (default: 1.)
omega : photon energy [eV] (default: 1.)
mg : photon mass [eV] (default: 3.e-15)
smoothed : whether sin^2 in conversion probability is smoothed out [bool] (default: False)
"""
A = (2./3)*(1 + axion_ini_frac) # equilibration constant
N = y/s # number of magnetic domains
P = P0(ma, g, s, B=B, omega=omega, mg=mg, smoothed=smoothed)
argument = -1.5*N*P
return A + (1-A)*exp(argument)