-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathigm.py
248 lines (212 loc) · 10.3 KB
/
igm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#######################################################
### Code for probabilities for axion-photon ###
### conversion in the IGM ###
### by Manuel A. Buen-Abad, 2020 ###
### and Chen Sun, 2020 ###
#######################################################
from __future__ import division
import numpy as np
from numpy import pi, sqrt, log, log10, exp, power
from scipy.integrate import simps, quad
from ag_probs import P0
from tools import treat_as_arr
from cosmo import tau_at_z, Ekernel
# CONSTANTS AND CONVERSION FACTORS:
c0 = 299792458. # [m/s] speed of light
aem = 1./137 # QED coupling constant
meeV = (0.51099895 * 1.e6) # [eV] electron mass
hbarc = 197.32698045930252e-18 # [GeV*cm]
GeV_over_eV = 1.e9 # GeV/eV
GeV_times_m = 1./hbarc # GeV*m conversion
eV_times_cm = GeV_times_m * 1.e-11 # eV*cm conversion
Mpc_over_m = 3.085677581282e22 # Mpc/m conversion
Mpc_times_GeV = GeV_times_m * Mpc_over_m # Mpc*GeV conversion
G_over_eV2 = 1.95e-2 # G/eV^2 conversion # MANUEL: NOTE: FIND MORE ACCURATE VALUE
Mpc_times_eV = Mpc_times_GeV/GeV_over_eV # Mpc*eV conversion
# FUNCTIONS:
def igm_Psurv(ma, g, z,
s=1.,
B=1.,
omega=1.,
mg=3.e-15,
h=0.7,
Omega_L=0.7,
w0=-1.,
wa=0.,
axion_ini_frac=0.,
smoothed=False,
redshift_dependent=True,
method='simps',
prob_func='norm_log',
Nz=501):
"""Photon IGM survival probability.
:param ma: axion mass [eV]
:param g: axion-photon coupling [GeV^-2]
:param z: redshift
:param s: magnetic domain size, today [Mpc] (default: 1.)
:param B: magnetic field, today [nG] (default: 1.)
:param omega: photon energy, today [eV] (default: 1.)
:param mg: photon mass [eV] (default: 3.e-15)
:param h: reduced Hubble parameter H0/100 [km/s/Mpc] (default: 0.7)
:param Omega_L: cosmological constant fractional density (default: 0.7)
:param w0: equation of state of the dark energy today (default: -1.)
:param wa: parametrizes how w changes over time, w = w0 + wa*(1-a) (default: 0.)
:param axion_ini_frac: the initial intensity fraction of axions: I_axion/I_photon (default: 0.)
:param smoothed: whether sin^2 in conversion probability is smoothed out [bool] (default: False)
:param redshift_dependent: whether the IGM background depends on redshift [bool] (default: True)
:param method: the integration method 'simps'/'quad'/'old' (default: 'simps')
:param prob_func: the form of the probability function: 'small_P' for the P<<1 limit, 'full_log' for log(1-1.5*P), and 'norm_log' for the normalized log: log(abs(1-1.5*P)) [str] (default: 'norm_log')
:param Nz: number of redshift bins, for the 'simps' methods (default: 501)
"""
z_arr, is_scalar = treat_as_arr(z)
A = (2./3)*(1 + axion_ini_frac) # equilibration constant
dH = (c0*1.e-3)/(100.*h) # Hubble distance [Mpc]
if redshift_dependent:
# z-dependent probability of conversion in one domain
def Pga(zz): return P0(ma, g, s/(1+zz), B=B*(1+zz)**2.,
omega=omega*(1.+zz), mg=mg*(1+zz)**1.5, smoothed=smoothed)
if method == 'vectorize':
if is_scalar:
raise Exception(
"'vectorize' only supports z array. Please choose 'simp' 'quad' or 'old' for scalar redshift")
# fast vectorization
zArr_raw = np.linspace(0., max(z_arr), int(Nz))
zArr = sorted(np.concatenate((zArr_raw, z_arr)))
zArr = np.unique(zArr)
# constructing integrand
if prob_func == 'norm_log':
integrand = log(np.abs(1 - 1.5*Pga(zArr))) / \
Ekernel(Omega_L, zArr, w0=w0, wa=wa)
elif prob_func == 'small_P':
integrand = -1.5*Pga(zArr) / \
Ekernel(Omega_L, zArr, w0=w0, wa=wa)
elif prob_func == 'full_log':
integrand = log(1 - 1.5*Pga(zArr)) / \
Ekernel(Omega_L, zArr, w0=w0, wa=wa)
else:
raise ValueError(
"Argument 'prob_func'={} must be equal to either 'small_P', 'full_log', or 'norm_log'. It's neither.".format(prob_func))
dzArr = np.concatenate(([0], np.diff(zArr)))
integral_raw = np.cumsum(integrand*dzArr) # integrating
integral = np.interp(z_arr, zArr, integral_raw) # picking input z
argument = (dH/s)*integral # argument of the exponential
elif method == 'simps':
if not is_scalar:
raise Exception(
"only 'vectorize' supports z array for now and you chose 'simp'")
# constructing array of redshifts
if z <= 1.e-10:
zArr = np.linspace(0., 1.e-10, int(Nz))
else:
zArr = np.linspace(0., z, int(Nz))
# constructing integrand
if prob_func == 'norm_log':
integrand = log(np.abs(1 - 1.5*Pga(zArr))) / \
Ekernel(Omega_L, zArr, w0=w0, wa=wa)
elif prob_func == 'small_P':
integrand = -1.5*Pga(zArr) / \
Ekernel(Omega_L, zArr, w0=w0, wa=wa)
elif prob_func == 'full_log':
integrand = log(1 - 1.5*Pga(zArr)) / \
Ekernel(Omega_L, zArr, w0=w0, wa=wa)
else:
raise ValueError(
"Argument 'prob_func'={} must be equal to either 'small_P', 'full_log', or 'norm_log'. It's neither.".format(prob_func))
integral = simps(integrand, zArr) # integrating
argument = (dH/s)*integral # argument of the exponential
elif method == 'quad':
if not is_scalar:
raise Exception(
"only 'vectorize' supports z array for now and you chose quad")
# constructing integrand
if prob_func == 'norm_log':
def integrand(zz): return log(
np.abs(1 - 1.5*Pga(zz))) / Ekernel(Omega_L, zz, w0=w0, wa=wa)
elif prob_func == 'small_P':
def integrand(zz): return -1.5*Pga(zz) / \
Ekernel(Omega_L, zz, w0=w0, wa=wa)
elif prob_func == 'full_log':
def integrand(zz): return log(
1 - 1.5*Pga(zz)) / Ekernel(Omega_L, zz, w0=w0, wa=wa)
else:
raise ValueError(
"Argument 'prob_func'={} must be equal to either 'small_P', 'full_log', or 'norm_log'. It's neither.".format(prob_func))
integral = quad(integrand, 0., z)[0] # integrating
argument = (dH/s)*integral # argument of the exponential
elif method == 'old':
if not is_scalar:
raise Exception(
"only 'vectorize' supports z array for now and you chose 'old'")
# computing comoving distance
y = tau_at_z(z, h=h, Omega_L=Omega_L, w0=w0, wa=wa)
argument = -1.5*(y/s)*Pga(z) # argument of exponential
else:
raise ValueError(
"'method' argument must be either 'simps', 'quad', or 'old'.")
else:
if is_scalar:
raise Exception(
"only redshift+vectorize supports z array for now and you chose redshift independent scheme")
# computing comoving distance
y = tau_at_z(z, h=h, Omega_L=Omega_L, w0=w0, wa=wa)
# z-independent probability conversion in one domain
P = P0(ma, g, s, B=B, omega=omega, mg=mg, smoothed=smoothed)
argument = -1.5*(y/s)*P # argument of exponential
return A + (1-A)*exp(argument)
def LumMod(ma, g, z, B, mg, h, OmL, w0=-1., wa=0.,
s=1.,
omega=1.,
axion_ini_frac=0.,
smoothed=False,
redshift_dependent=True,
method='simps',
prob_func='norm_log',
Nz=501,
skip_LumMod=False):
"""Here we use a simple function to modify the intrinsic luminosity of the SN
:param ma: axion mass [eV]
:param g: axion photon coupling [1/GeV]
:param z: redshift, could be scalar or array. Array is preferred for fast vectorization.
:param B: magnetic field, today [nG]
:param mg: photon mass [eV]
:param h: Hubble [100 km/s/Mpc]
:param OmL: Omega_Lambda
:param w0: equation of state of the dark energy today (default: -1.)
:param wa: parametrizes how w changes over time, w = w0 + wa*(1-a) (default: 0.)
:param s: domain size [Mpc]
:param omega: energy [eV]
:param axion_ini_frac:
:param smoothed:
:param redshift_dependent:
:param method: (simps, quad, old) for scalar z, or 'vectorize' if z is an array.
:param prob_func:
:param Nz:
:param skip_LumMod: if switched on, return zero directly. This is useful for runs that do not involve axions. (Default: False)
Returns
-------
res: scalar, delta M in the note
"""
if not skip_LumMod:
try:
# 2.5log10(L/L(1e-5Mpc))
res = 2.5 * log10(igm_Psurv(ma, g, z,
s=s,
B=B,
omega=omega,
mg=mg,
h=h,
Omega_L=OmL,
w0=w0,
wa=wa,
axion_ini_frac=axion_ini_frac,
smoothed=smoothed,
redshift_dependent=redshift_dependent,
method=method,
prob_func=prob_func,
Nz=Nz))
except Warning:
print('ma=%e, g=%e' % (ma, g))
raise Exception('Overflow!!!')
else:
res = 0.
return res