forked from ManuelBuenAbad/snr_ghosts
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgreen.py
132 lines (99 loc) · 3.37 KB
/
green.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from __future__ import division
import numpy as np
from numpy import pi, sqrt, log, log10, power, exp
from scipy.interpolate import interp1d, interp2d
import os
# current directory
current_dir = os.getcwd()
import tools as tl
import constants as ct
import particle as pt
import astro as ap
import echo as ec
import data as dt
# -------------------------------------------------
###############
# DIRECTORIES #
###############
green_path = os.path.dirname(os.path.abspath(__file__))+"/output/green_snr/"
# -------------------------------------------------
##########
# ARRAYS #
##########
# loading pre-computed arrays
try:
Lpk_arr = np.loadtxt(green_path+"Lpk_arr.txt", delimiter=",")
tpk_arr = np.loadtxt(green_path+"tpk_arr.txt", delimiter=",")
# peak luminosity and time grids
Lpk_Gr, tpk_Gr = np.meshgrid(Lpk_arr, tpk_arr, indexing='xy')
# normal (0, 1) variables from pre-computed arrays:
normal_Lpk_arr = (log10(Lpk_arr)-ct._mu_log10_Lpk_)/ct._sig_log10_Lpk_
normal_tpk_arr = (log10(tpk_arr)-ct._mu_log10_tpk_)/ct._sig_log10_tpk_
# sigmas contours on pre-computed grids
sigs_Gr = np.sqrt(((log10(Lpk_Gr)-ct._mu_log10_Lpk_)/ct._sig_log10_Lpk_)**2 + ((log10(tpk_Gr)-ct._mu_log10_tpk_)/ct._sig_log10_tpk_)**2)
except:
Lpk_arr, tpk_arr = None, None
try:
ma_arr = np.loadtxt(green_path+"ma_arr.txt", delimiter=",")
except:
ma_arr = None
try:
tpk_arr = np.loadtxt(green_path+"tpk_arr.txt", delimiter=",")
ttr_arr = np.loadtxt(green_path+"ttr_arr.txt", delimiter=",")
except:
pass
# -------------------------------------------------
###############
# SNR CATALOG #
###############
# Loading Green's catalog:
# First let's parse snrs.list.html
# Names:
snr_name_arr = dt.snr_name_arr
# Catalog:
snrs_dct = dt.snrs_dct
snrs_cut = dt.snrs_cut
snrs_age = dt.snrs_age
snrs_age_only = dt.snrs_age_only
# -------------------------------------------------
#############
# FUNCTIONS #
#############
def load_green_results(name, run_id=None):
"""
Function that loads the numerical results for the SNRs from Green's Catalog.
"""
if not name in snrs_cut.keys():
raise ValueError("name={} not available in results.".format(name))
# loading lines of log file
log_file = "run_%d_log.txt" % run_id
with open(green_path+log_file, 'r') as log_info:
log_lines = [line.rstrip('\n') for line in log_info]
# looking in the log what the parameter slice was:
slice_idx = [('slice:' in line) for line in log_lines].index(True)
slice = log_lines[slice_idx].split()[-1]
# file paths:
folder = green_path+name+"/"
file = name+"_run-"+str(run_id)+".txt"
# loading parameters
if slice == "ma-ga":
params = ma_arr
elif slice == "Lpk-tpk":
params = (Lpk_arr, tpk_arr)
elif slice == "ttr-tpk":
params = (ttr_arr, tpk_arr)
# loading results:
results = {}
results['echo'] = np.loadtxt(folder+"echo_"+file, delimiter=",")
results['sn'] = np.loadtxt(folder+"sn_"+file, delimiter=",")
results['ga'] = np.loadtxt(folder+"ga_"+file, delimiter=",")
results['tage'] = np.loadtxt(folder+"tage_"+file, delimiter=",")
try:
results['ttrans'] = np.loadtxt(folder+"ttrans_"+file, delimiter=",")
except:
pass
try:
results['Lpk'] = np.loadtxt(folder+"Lpk_"+file, delimiter=",")
except:
pass
return log_lines, params, results