Skip to content

Latest commit

 

History

History
316 lines (251 loc) · 14.1 KB

runbook-ecir2019-ccrf.md

File metadata and controls

316 lines (251 loc) · 14.1 KB

Anserini: ECIR 2019 Cross-Collection Relevance Feedback

This page documents code for reproducing results from the following paper:

Requirements: The main requirements are:

python >= 3.6
numpy  >= 1.15.4
scipy  >= 1.1.0
scikit-learn >= 0.20.1
lightgbm >= 2.2.1

We suggest using Conda to manage your Python environment. For reference, this was the Conda environment for our experiments (after setting up the environment with conda install -c conda-forge lightgbm):

$ conda list
# packages in environment at /anaconda3/envs/python36:
#
# Name                    Version                   Build  Channel
blas                      1.0                         mkl  
bzip2                     1.0.6                         1    conda-forge
ca-certificates           2018.11.29           ha4d7672_0    conda-forge
certifi                   2018.11.29            py36_1000    conda-forge
clangdev                  4.0.0                 default_0    conda-forge
icu                       58.2                 hfc679d8_0    conda-forge
intel-openmp              2019.1                      144  
libcxx                    4.0.1                hcfea43d_1  
libcxxabi                 4.0.1                hcfea43d_1  
libedit                   3.1.20170329         hb402a30_2  
libffi                    3.2.1                h475c297_4  
libgfortran               3.0.1                h93005f0_2  
libiconv                  1.15                 h470a237_3    conda-forge
libxml2                   2.9.8                h422b904_5    conda-forge
lightgbm                  2.2.1            py36hfc679d8_0    conda-forge
llvmdev                   4.0.0                 default_0    conda-forge
mkl                       2019.1                      144  
mkl_fft                   1.0.10                   py36_0    conda-forge
mkl_random                1.0.2                    py36_0    conda-forge
ncurses                   6.1                  h0a44026_1  
numpy                     1.15.4           py36hacdab7b_0  
numpy-base                1.15.4           py36h6575580_0  
openmp                    4.0.0                         1    conda-forge
openssl                   1.0.2p               h470a237_1    conda-forge
pip                       18.1                     py36_0  
python                    3.6.6                h5001a0f_0    conda-forge
readline                  7.0                  h1de35cc_5  
scikit-learn              0.20.1           py36h27c97d8_0  
scipy                     1.1.0            py36h1410ff5_2  
setuptools                40.6.2                   py36_0  
sqlite                    3.25.3               ha441bb4_0  
tk                        8.6.8                ha441bb4_0  
wheel                     0.32.3                   py36_0  
xz                        5.2.4                h1de35cc_4  
zlib                      1.2.11               h1de35cc_3  

Preparation

Run the following commands to index the Robust04, Robust05, and Core17 collections:

nohup sh target/appassembler/bin/IndexCollection -collection TrecCollection \
 -generator JsoupGenerator -threads 16 -input /path/to/robust04 \
 -index lucene-index.robust04.pos+docvectors+rawdocs \
 -storePositions -storeDocvectors -storeRawDocs >& log.robust04.pos+docvectors+rawdocs &

nohup sh target/appassembler/bin/IndexCollection -collection TrecCollection \
 -generator JsoupGenerator -threads 16 -input /path/to/robust05 \
 -index lucene-index.robust05.pos+docvectors+rawdocs \
 -storePositions -storeDocvectors -storeRawDocs >& log.robust05.pos+docvectors+rawdocs &

nohup sh target/appassembler/bin/IndexCollection -collection NewYorkTimesCollection \
 -generator JsoupGenerator -threads 16 -input /path/to/core17 \
 -index lucene-index.core17.pos+docvectors+rawdocs \
 -storePositions -storeDocvectors -storeRawDocs >& log.core17.pos+docvectors+rawdocs &

Retrieve the top-ranked documents using BM25, BM25 with RM3 (BM25+RM3), and BM25 with axiomatic semantic term matching (BM25+AX) for the three collections:

nohup target/appassembler/bin/SearchCollection -topicreader Trec \
 -index lucene-index.robust04.pos+docvectors+rawdocs \
 -topics tools/topics-and-qrels/topics.robust04.301-450.601-700.txt \
 -output run.robust04.bm25.topics.robust04.301-450.601-700.txt -bm25 -hits 10000 &

nohup target/appassembler/bin/SearchCollection -topicreader Trec \
 -index lucene-index.robust04.pos+docvectors+rawdocs \
 -topics tools/topics-and-qrels/topics.robust04.301-450.601-700.txt \
 -output run.robust04.bm25+rm3.topics.robust04.301-450.601-700.txt -bm25 -rm3 -hits 10000 &

nohup target/appassembler/bin/SearchCollection -topicreader Trec \
 -index lucene-index.robust04.pos+docvectors+rawdocs \
 -topics tools/topics-and-qrels/topics.robust04.301-450.601-700.txt \
 -output run.robust04.bm25+ax.topics.robust04.301-450.601-700.txt \
 -bm25 -axiom -rerankCutoff 20 -axiom.deterministic  -hits 10000 &

nohup target/appassembler/bin/SearchCollection -topicreader Trec \
 -index lucene-index.robust05.pos+docvectors+rawdocs \
 -topics tools/topics-and-qrels/topics.robust05.txt \
 -output run.robust05.bm25.topics.robust05.txt -bm25 -hits 10000 &

nohup target/appassembler/bin/SearchCollection -topicreader Trec \
 -index lucene-index.robust05.pos+docvectors+rawdocs \
 -topics tools/topics-and-qrels/topics.robust05.txt \
 -output run.robust05.bm25+rm3.topics.robust05.txt -bm25 -rm3 -hits 10000 &

nohup target/appassembler/bin/SearchCollection -topicreader Trec \
 -index lucene-index.robust05.pos+docvectors+rawdocs \
 -topics tools/topics-and-qrels/topics.robust05.txt \
 -output run.robust05.bm25+ax.topics.robust05.txt \
 -bm25 -axiom -rerankCutoff 20 -axiom.deterministic -hits 10000 &

nohup target/appassembler/bin/SearchCollection -topicreader Trec \
 -index lucene-index.core17.pos+docvectors+rawdocs \
 -topics tools/topics-and-qrels/topics.core17.txt \
 -output run.core17.bm25.topics.core17.txt -bm25 -hits 10000 &

nohup target/appassembler/bin/SearchCollection -topicreader Trec \
 -index lucene-index.core17.pos+docvectors+rawdocs \
 -topics tools/topics-and-qrels/topics.core17.txt \
 -output run.core17.bm25+rm3.topics.core17.txt -bm25 -rm3 -hits 10000 &

nohup target/appassembler/bin/SearchCollection -topicreader Trec \
 -index lucene-index.core17.pos+docvectors+rawdocs \
 -topics tools/topics-and-qrels/topics.core17.txt \
 -output run.core17.bm25+ax.topics.core17.txt \
 -bm25 -axiom -rerankCutoff 20 -axiom.deterministic -hits 10000 &

Train classifiers and apply inference for relevance transfer: Configuration files for different combinations of source and target collections are stored in src/main/python/ecir2019_ccrf/configs/. For each configuration, run the following commands:

python src/main/python/ecir2019_ccrf/prepare_training_data.py --config $CONFIG_NAME
python src/main/python/ecir2019_ccrf/prepare_test_data.py --config $CONFIG_NAME
python src/main/python/ecir2019_ccrf/rerank.py --config $CONFIG_NAME
python src/main/python/ecir2019_ccrf/generate_runs.py --config $CONFIG_NAME

After successfully generating all experimental results, you should have the following folders in your current directory:

ccrf.0405_core17/
ccrf.0405_core17.ax/
ccrf.0405_core17.rm3/
ccrf.0417_robust05/
ccrf.0417_robust05.ax/
ccrf.0417_robust05.rm3/
ccrf.04_core17.ax/
ccrf.04_core17.rm3/
ccrf.04_robust05.ax/
ccrf.04_robust05.rm3/
ccrf.0517_robust04/
ccrf.0517_robust04.ax/
ccrf.0517_robust04.rm3/
ccrf.05_core17.ax/
ccrf.05_core17.rm3/
ccrf.05_robust04.ax/
ccrf.05_robust04.rm3/
ccrf.17_robust04.ax/
ccrf.17_robust04.rm3/
ccrf.17_robust05.ax/
ccrf.17_robust05.rm3/

Results

Baselines

These are commands to generate results in Table 1 of the paper:

python src/main/python/ecir2019_ccrf/filter_topics.py --input ccrf.0517_robust04/robust04_bm25.txt \
 --output robust04_bm25.cut.txt && \
eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.robust2004.txt \
 robust04_bm25.cut.txt -m map -m P.10 -M 1000

python src/main/python/ecir2019_ccrf/filter_topics.py --input ccrf.0517_robust04.rm3/robust04_bm25+rm3.txt \
 --output robust04_bm25+rm3.cut.txt && \
eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.robust2004.txt \
 robust04_bm25+rm3.cut.txt -m map -m P.10 -M 1000

python src/main/python/ecir2019_ccrf/filter_topics.py --input ccrf.0517_robust04.ax/robust04_bm25+ax.txt \
 --output robust04_bm25+ax.cut.txt && \
eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.robust2004.txt \
 robust04_bm25+ax.cut.txt -m map -m P.10 -M 1000

python src/main/python/ecir2019_ccrf/filter_topics.py --input ccrf.0417_robust05/robust05_bm25.txt \
 --output robust05_bm25.cut.txt && \
eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.robust2005.txt \
 robust05_bm25.cut.txt -m map -m P.10 -M 1000

python src/main/python/ecir2019_ccrf/filter_topics.py --input ccrf.0417_robust05.rm3/robust05_bm25+rm3.txt \
 --output robust05_bm25+rm3.cut.txt && \
eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.robust2005.txt \
 robust05_bm25+rm3.cut.txt -m map -m P.10 -M 1000

python src/main/python/ecir2019_ccrf/filter_topics.py --input ccrf.0417_robust05.ax/robust05_bm25+ax.txt \
 --output robust05_bm25+ax.cut.txt && \
eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.robust2005.txt \
 robust05_bm25+ax.cut.txt -m map -m P.10 -M 1000

eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.core17.txt \
 ccrf.0405_core17/core17_bm25.txt -m map -m P.10 -M 1000

eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.core17.txt \
 ccrf.0405_core17.rm3/core17_bm25+rm3.txt -m map -m P.10 -M 1000

eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.core17.txt \
 ccrf.0405_core17.ax/core17_bm25+ax.txt -m map -m P.10 -M 1000

Main Relevance Transfer Experiment

These are commands to generate results in Table 2 of the paper: training on Robust04 and Robust05, testing on Core17.

The first block of the table contains results of WCRobust0405 and results copied from Table 1.

The second block of the table contains results from optimal alpha settings. To determine the optimal settings, use the following commands:

eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.core17.txt \
 ccrf.0405_core17.rm3/core17.rm3_${clf}_${weight}.txt -m map -m P.10 -M 1000

eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.core17.txt \
 ccrf.0405_core17.ax/core17.ax_${clf}_${weight}.txt -m map -m P.10 -M 1000

The options for clf are lr, svm, lgb, and e3 (ensemble of the three classifiers), and weight is [0.0 ... 1.0] in tenth increments.

The third block of the table contains results with alpha = 0.6:

eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.core17.txt \
 ccrf.0405_core17.rm3/core17.rm3_${clf}_0.6.txt -m map -m P.10 -M 1000

eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.core17.txt \
 ccrf.0405_core17.ax/core17.ax_${clf}_0.6.txt -m map -m P.10 -M 1000

The options for clf are lr, svm, lgb, and e3 (same as above).

Experiments with Different Source/Target Combinations

These are commands to generate results in Table 3 of the paper.

Relevance transfer to Core17:

eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.core17.txt \
 ccrf.0405_core17.rm3/core17_bm25+rm3.txt -m map -m P.10 -M 1000

eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.core17.txt \
 ccrf.0405_core17.rm3/core17.rm3_lr_0.6.txt -m map -m P.10 -M 1000

eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.core17.txt \
 ccrf.04_core17.rm3/core17.rm3_lr_0.6.txt -m map -m P.10 -M 1000

eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.core17.txt \
 ccrf.05_core17.rm3/core17.rm3_lr_0.6.txt -m map -m P.10 -M 1000

Relevance transfer to Robust04:

python src/main/python/ecir2019_ccrf/filter_topics.py --input ccrf.0517_robust04.rm3/robust04_bm25+rm3.txt \
 --output robust04_bm25+rm3.cut.txt && \
eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.robust2004.txt \
 robust04_bm25+rm3.cut.txt -m map -m P.10 -M 1000

python src/main/python/ecir2019_ccrf/filter_topics.py --input ccrf.0517_robust04.rm3/robust04.rm3_lr_0.6.txt \
 --output robust04.rm3_lr_0.6.cut.txt &&  \
eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.robust2004.txt \
 robust04.rm3_lr_0.6.cut.txt -m map -m P.10 -M 1000

python src/main/python/ecir2019_ccrf/filter_topics.py --input ccrf.05_robust04.rm3/robust04.rm3_lr_0.6.txt \
 --output robust04.rm3_lr_0.6.cut.txt && \
eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.robust2004.txt \
 robust04.rm3_lr_0.6.cut.txt -m map -m P.10 -M 1000

python src/main/python/ecir2019_ccrf/filter_topics.py --input ccrf.17_robust04.rm3/robust04.rm3_lr_0.6.txt \
 --output robust04.rm3_lr_0.6.cut.txt && \
eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.robust2004.txt \
 robust04.rm3_lr_0.6.cut.txt -m map -m P.10 -M 1000

Relevance transfer to Robust05:

python src/main/python/ecir2019_ccrf/filter_topics.py --input ccrf.0417_robust05.rm3/robust05_bm25+rm3.txt \
 --output robust05_bm25+rm3.cut.txt && \
eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.robust2005.txt \
 robust05_bm25+rm3.cut.txt -m map -m P.10 -M 1000

python src/main/python/ecir2019_ccrf/filter_topics.py --input ccrf.0417_robust05.rm3/robust05.rm3_lr_0.6.txt \
 --output robust05.rm3_lr_0.6.cut.txt && \
eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.robust2005.txt \
 robust05.rm3_lr_0.6.cut.txt -m map -m P.10 -M 1000

python src/main/python/ecir2019_ccrf/filter_topics.py --input ccrf.04_robust05.rm3/robust05.rm3_lr_0.6.txt \
 --output robust05.rm3_lr_0.6.cut.txt && \
eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.robust2005.txt \
 robust05.rm3_lr_0.6.cut.txt -m map -m P.10 -M 1000

python src/main/python/ecir2019_ccrf/filter_topics.py --input ccrf.17_robust05.rm3/robust05.rm3_lr_0.6.txt \
 --output robust05.rm3_lr_0.6.cut.txt && \
eval/trec_eval.9.0.4/trec_eval tools/topics-and-qrels/qrels.robust2005.txt \
 robust05.rm3_lr_0.6.cut.txt -m map -m P.10 -M 1000