This repository has been archived by the owner on Aug 26, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsquareroot.go
360 lines (316 loc) · 10.9 KB
/
squareroot.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
package gokalman
import (
"fmt"
"math"
"github.com/gonum/matrix/mat64"
)
// NewSquareRoot returns a new Square Root KF. To get the next estimate, push to
// the MeasChan the next measurement and read from StateEst and MeasEst to get
// the next state estimate (\hat{x}{k+1}^{+}) and next measurement estimate (\hat{y}{k+1}).
// The Covar channel stores the next covariance of the system (P_{k+1}^{+}).
// Parameters:
// - x0: initial state
// - Covar0: initial covariance matrix
// - F: state update matrix
// - G: control matrix (if all zeros, then control vector will not be used)
// - H: measurement update matrix
// - noise: Noise
func NewSquareRoot(x0 *mat64.Vector, P0 mat64.Symmetric, F, G, H mat64.Matrix, noise Noise) (*SquareRoot, *SquareRootEstimate, error) {
// Check the dimensions of each matrix to avoid errors.
if err := checkMatDims(x0, P0, "x0", "P0", rows2cols); err != nil {
return nil, nil, err
}
if err := checkMatDims(F, P0, "F", "P0", rows2cols); err != nil {
return nil, nil, err
}
if err := checkMatDims(H, x0, "H", "x0", cols2rows); err != nil {
return nil, nil, err
}
// Get s0 from Covariance
// Compute the cholesky factorization of the covariance.
var sqrtP0 mat64.Cholesky
sqrtP0.Factorize(P0)
var stddevL mat64.TriDense
stddevL.LFromCholesky(&sqrtP0)
var stddev mat64.Dense
stddev.Clone(&stddevL)
stdr, stdc := stddev.Dims()
// Populate with the initial values.
rowsH, _ := H.Dims()
est0 := NewSqrtEstimate(x0, mat64.NewVector(rowsH, nil), mat64.NewVector(rowsH, nil), &stddev, mat64.NewDense(stdr, stdc, nil), nil)
// Return the state and estimate to the SquareRoot structure.
sqrt := SquareRoot{F, G, H, nil, nil, nil, !IsNil(G), est0, est0, 0}
sqrt.SetNoise(noise) // Computes the Cholesky decompositions of the noise.
return &sqrt, &est0, nil
}
// SquareRoot defines a square root kalman filter. Use NewSqrt to initialize.
type SquareRoot struct {
F mat64.Matrix
G mat64.Matrix
H mat64.Matrix
Noise Noise
sqrtQ, sqrtR mat64.Matrix
needCtrl bool
prevEst, initEst SquareRootEstimate
step int
}
// Prints the output.
func (kf *SquareRoot) String() string {
return fmt.Sprintf("F=%v\nG=%v\nH=%v\n%s", mat64.Formatted(kf.F, mat64.Prefix(" ")), mat64.Formatted(kf.G, mat64.Prefix(" ")), mat64.Formatted(kf.H, mat64.Prefix(" ")), kf.Noise)
}
// GetStateTransition returns the F matrix.
func (kf *SquareRoot) GetStateTransition() mat64.Matrix {
return kf.F
}
// GetInputControl returns the G matrix.
func (kf *SquareRoot) GetInputControl() mat64.Matrix {
return kf.G
}
// GetMeasurementMatrix returns the H matrix.
func (kf *SquareRoot) GetMeasurementMatrix() mat64.Matrix {
return kf.H
}
// SetStateTransition updates the F matrix.
func (kf *SquareRoot) SetStateTransition(F mat64.Matrix) {
kf.F = F
}
// SetInputControl updates the G matrix.
func (kf *SquareRoot) SetInputControl(G mat64.Matrix) {
kf.G = G
}
// SetMeasurementMatrix updates the H matrix.
func (kf *SquareRoot) SetMeasurementMatrix(H mat64.Matrix) {
kf.H = H
}
// SetNoise updates the Noise.
func (kf *SquareRoot) SetNoise(n Noise) {
// Compute the Cholesky of Q and R only once when the noise is set.
var sqrtQchol mat64.Cholesky
sqrtQchol.Factorize(n.ProcessMatrix())
var sqrtQ mat64.TriDense
sqrtQ.LFromCholesky(&sqrtQchol)
var sqrtRchol mat64.Cholesky
sqrtRchol.Factorize(n.MeasurementMatrix())
var sqrtR mat64.TriDense
sqrtR.LFromCholesky(&sqrtRchol)
kf.Noise = n
kf.sqrtQ = &sqrtQ
kf.sqrtR = &sqrtR
}
// GetNoise updates the F matrix.
func (kf *SquareRoot) GetNoise() Noise {
return kf.Noise
}
// Reset reinitializes the KF with its initial estimate.
func (kf *SquareRoot) Reset() {
kf.prevEst = kf.initEst
kf.step = 0
kf.Noise.Reset()
}
// Update implements the KalmanFilter interface.
func (kf *SquareRoot) Update(measurement, control *mat64.Vector) (est Estimate, err error) {
// Check for matrix dimensions errors.
if err = checkMatDims(control, kf.G, "control (u)", "G", rows2cols); kf.needCtrl && err != nil {
return nil, err
}
if err = checkMatDims(measurement, kf.H, "measurement (y)", "H", rows2rows); err != nil {
return nil, err
}
// Prediction Step //
// Get xKp1Minus
var xKp1Minus, xKp1Minus1, xKp1Minus2 mat64.Vector
xKp1Minus1.MulVec(kf.F, kf.prevEst.State())
if kf.needCtrl {
xKp1Minus2.MulVec(kf.G, control)
xKp1Minus.AddVec(&xKp1Minus1, &xKp1Minus2)
} else {
xKp1Minus = xKp1Minus1
}
// Get sKplus
//sKPlus := kf.prevEst.stddev
// Get sKp1Minus
// C Matrix
nState, _ := kf.prevEst.state.Dims()
cVals := make([]float64, 2*nState*nState, 2*nState*nState)
var sTFT mat64.Dense
sTFT.Mul(kf.prevEst.stddev.T(), kf.F.T())
cValsPos := 0
sTFTr, sTFTc := sTFT.Dims()
for i := 0; i < sTFTr; i++ {
for j := 0; j < sTFTc; j++ {
cVals[cValsPos] = sTFT.At(i, j)
cValsPos++
}
}
// Now let's add the sqrtQ elements to the values for C
sQr, sQc := kf.sqrtQ.Dims()
for i := 0; i < sQr; i++ {
for j := 0; j < sQc; j++ {
cVals[cValsPos] = kf.sqrtQ.T().At(i, j)
cValsPos++
}
}
C := mat64.NewDense(2*nState, nState, cVals)
var TcUc mat64.QR
TcUc.Factorize(C)
var Uc mat64.Dense
Uc.RFromQR(&TcUc)
// Get sKp1Minus from the top block of QR decomposition.
//skR, skC := kf.prevEst.stddev.Dims()
skR := nState
skC := nState
SKp1Minus := Uc.View(0, 0, skR, skC)
// Delta Matrix
// And now let's compute the two bottom blocks of the Delta matrix.
var SKp1MinusTHT mat64.Dense
SKp1MinusTHT.Mul(SKp1Minus.T(), kf.H.T())
shR, shC := SKp1MinusTHT.Dims()
sRr, sRc := kf.sqrtR.Dims()
pMeas, _ := measurement.Dims()
Δ := mat64.NewDense(nState+pMeas, nState+pMeas, nil)
ΔrMax, ΔcMax := Δ.Dims()
// Note that we populate by *column* for simpler logic.
for Δc := 0; Δc < ΔcMax; Δc++ {
for Δr := 0; Δr < ΔrMax; Δr++ {
if Δc < sRc {
if Δr < sRr {
// Still in the upper left, let's set this to the R.T()
Δ.Set(Δr, Δc, kf.sqrtR.T().At(Δr, Δc))
} else if Δc < shC {
Δ.Set(Δr, Δc, SKp1MinusTHT.At(Δr-sRr, Δc))
} else {
Δ.Set(Δr, Δc, SKp1Minus.T().At(Δr-skC, Δc-shR))
}
} else if Δr < sRr {
Δ.Set(Δr, Δc, 0)
} else {
Δ.Set(Δr, Δc, SKp1Minus.T().At(Δr-sRr, Δc-shC))
}
}
}
// Extract the UΔ matrix post QR decomposition.
var TΔUΔ mat64.QR
TΔUΔ.Factorize(Δ)
var UΔ mat64.Dense
UΔ.RFromQR(&TΔUΔ)
// Extract Skp1Plus first
UΔR, UΔC := UΔ.Dims()
// Note that Skp1PlusT is transposed, hence the change of indices.
Skp1PlusT := UΔ.View(UΔR-skC, UΔC-skR, skC, skR)
SyyT := UΔ.View(0, 0, pMeas, pMeas)
Wkp1PlusT := UΔ.View(0, pMeas, UΔR-skC, UΔC-pMeas)
var Skp1Plus, Syy, Wkp1Plus mat64.Dense
Skp1Plus.Clone(Skp1PlusT.T())
Syy.Clone(SyyT.T())
Wkp1Plus.Clone(Wkp1PlusT.T())
// Compute estimated measurement update \hat{y}_{k}
var ykHat mat64.Vector
ykHat.MulVec(kf.H, kf.prevEst.State())
ykHat.AddVec(&ykHat, kf.Noise.Measurement(kf.step))
// Compute Kalman gain.
var SyyInv mat64.Dense
if invErr := SyyInv.Inverse(&Syy); err != nil {
return nil, fmt.Errorf("matrix Syy is not invertible: %s\nSyy=%v", invErr, mat64.Formatted(&SyyInv, mat64.Prefix(" ")))
}
var Kkp1 mat64.Dense
if pMeas == 1 {
// Then SyyInv is just a scalar.
Kkp1.Scale(SyyInv.At(0, 0), &Wkp1Plus)
} else {
Kkp1.Mul(&Wkp1Plus, &SyyInv)
}
// Measurement update
var innovation, xkp1Plus, xkp1Plus1, xkp1Plus2 mat64.Vector
xkp1Plus1.MulVec(kf.H, &xKp1Minus)
innovation.SubVec(measurement, &xkp1Plus1)
if rX, _ := innovation.Dims(); rX == 1 {
// innovation is a scalar and mat64 won't be happy.
var sKkp1 mat64.Dense
sKkp1.Scale(innovation.At(0, 0), &Kkp1)
rGain, _ := sKkp1.Dims()
xkp1Plus2.AddVec(sKkp1.ColView(0), mat64.NewVector(rGain, nil))
} else {
xkp1Plus2.MulVec(&Kkp1, &innovation)
}
xkp1Plus.AddVec(&xKp1Minus, &xkp1Plus2)
xkp1Plus.AddVec(&xkp1Plus, kf.Noise.Process(kf.step))
est = NewSqrtEstimate(&xkp1Plus, &ykHat, &innovation, &Skp1Plus, SKp1Minus.(*mat64.Dense), &Kkp1)
kf.prevEst = est.(SquareRootEstimate)
kf.step++
return
}
// SquareRootEstimate is the output of each update state of the SquareRoot KF.
// It implements the Estimate interface.
type SquareRootEstimate struct {
state, meas, innovation *mat64.Vector
stddev, predStddev *mat64.Dense
gain mat64.Matrix
cachedCovar, predCachedCovar mat64.Symmetric
}
// IsWithinNσ returns whether the estimation is within the 2σ bounds.
func (e SquareRootEstimate) IsWithinNσ(N float64) bool {
for i := 0; i < e.state.Len(); i++ {
nσ := N * math.Sqrt(e.Covariance().At(i, i))
if e.state.At(i, 0) > nσ || e.state.At(i, 0) < -nσ {
return false
}
}
return true
}
// IsWithin2σ returns whether the estimation is within the 2σ bounds.
func (e SquareRootEstimate) IsWithin2σ() bool {
return e.IsWithinNσ(2)
}
// State implements the Estimate interface.
func (e SquareRootEstimate) State() *mat64.Vector {
return e.state
}
// Measurement implements the Estimate interface.
func (e SquareRootEstimate) Measurement() *mat64.Vector {
return e.meas
}
// Innovation implements the Estimate interface.
func (e SquareRootEstimate) Innovation() *mat64.Vector {
return e.innovation
}
// Covariance implements the Estimate interface.
func (e SquareRootEstimate) Covariance() mat64.Symmetric {
if e.cachedCovar == nil {
var covar mat64.Dense
covar.Mul(e.stddev, e.stddev.T())
// We don't check whether AsSymDense fails because it Skp1Plus comes from QR,
// it's the bottom triangle of the upper triangular R. Hence, s*s^T will be symmetric.
cachedCovar, _ := AsSymDense(&covar)
e.cachedCovar = cachedCovar
}
return e.cachedCovar
}
// PredCovariance implements the Estimate interface.
func (e SquareRootEstimate) PredCovariance() mat64.Symmetric {
if e.predCachedCovar == nil {
var predCovar mat64.Dense
predCovar.Mul(e.predStddev, e.predStddev.T())
// We don't check whether AsSymDense fails because it Skp1Plus comes from QR,
// it's the bottom triangle of the upper triangular R. Hence, s*s^T will be symmetric.
predCachedCovar, _ := AsSymDense(&predCovar)
e.predCachedCovar = predCachedCovar
}
return e.predCachedCovar
}
// Gain the Estimate interface.
func (e SquareRootEstimate) Gain() mat64.Matrix {
return e.gain
}
func (e SquareRootEstimate) String() string {
state := mat64.Formatted(e.State(), mat64.Prefix(" "))
meas := mat64.Formatted(e.Measurement(), mat64.Prefix(" "))
covar := mat64.Formatted(e.Covariance(), mat64.Prefix(" "))
gain := mat64.Formatted(e.Gain(), mat64.Prefix(" "))
innov := mat64.Formatted(e.Innovation(), mat64.Prefix(" "))
predp := mat64.Formatted(e.PredCovariance(), mat64.Prefix(" "))
return fmt.Sprintf("{\ns=%v\ny=%v\nP=%v\nK=%v\nP-=%v\ni=%v\n}", state, meas, covar, gain, predp, innov)
}
// NewSqrtEstimate initializes a new InformationEstimate.
func NewSqrtEstimate(state, meas, innovation *mat64.Vector, stddev, predStddev, gain *mat64.Dense) SquareRootEstimate {
return SquareRootEstimate{state, meas, innovation, stddev, predStddev, gain, nil, nil}
}