forked from lkwq007/stablediffusion-infinity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
274 lines (244 loc) · 9.15 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from PIL import Image
from PIL import ImageFilter
import cv2
import numpy as np
import scipy
import scipy.signal
from scipy.spatial import cKDTree
import os
from perlin2d import *
patch_match_compiled = True
try:
from PyPatchMatch import patch_match
except Exception as e:
try:
import patch_match
except Exception as e:
patch_match_compiled = False
try:
patch_match
except NameError:
print("patch_match compiling failed, will fall back to edge_pad")
patch_match_compiled = False
def edge_pad(img, mask, mode=1):
if mode == 0:
nmask = mask.copy()
nmask[nmask > 0] = 1
res0 = 1 - nmask
res1 = nmask
p0 = np.stack(res0.nonzero(), axis=0).transpose()
p1 = np.stack(res1.nonzero(), axis=0).transpose()
min_dists, min_dist_idx = cKDTree(p1).query(p0, 1)
loc = p1[min_dist_idx]
for (a, b), (c, d) in zip(p0, loc):
img[a, b] = img[c, d]
elif mode == 1:
record = {}
kernel = [[1] * 3 for _ in range(3)]
nmask = mask.copy()
nmask[nmask > 0] = 1
res = scipy.signal.convolve2d(
nmask, kernel, mode="same", boundary="fill", fillvalue=1
)
res[nmask < 1] = 0
res[res == 9] = 0
res[res > 0] = 1
ylst, xlst = res.nonzero()
queue = [(y, x) for y, x in zip(ylst, xlst)]
# bfs here
cnt = res.astype(np.float32)
acc = img.astype(np.float32)
step = 1
h = acc.shape[0]
w = acc.shape[1]
offset = [(1, 0), (-1, 0), (0, 1), (0, -1)]
while queue:
target = []
for y, x in queue:
val = acc[y][x]
for yo, xo in offset:
yn = y + yo
xn = x + xo
if 0 <= yn < h and 0 <= xn < w and nmask[yn][xn] < 1:
if record.get((yn, xn), step) == step:
acc[yn][xn] = acc[yn][xn] * cnt[yn][xn] + val
cnt[yn][xn] += 1
acc[yn][xn] /= cnt[yn][xn]
if (yn, xn) not in record:
record[(yn, xn)] = step
target.append((yn, xn))
step += 1
queue = target
img = acc.astype(np.uint8)
else:
nmask = mask.copy()
ylst, xlst = nmask.nonzero()
yt, xt = ylst.min(), xlst.min()
yb, xb = ylst.max(), xlst.max()
content = img[yt : yb + 1, xt : xb + 1]
img = np.pad(
content,
((yt, mask.shape[0] - yb - 1), (xt, mask.shape[1] - xb - 1), (0, 0)),
mode="edge",
)
return img, mask
def perlin_noise(img, mask):
lin_x = np.linspace(0, 5, mask.shape[1], endpoint=False)
lin_y = np.linspace(0, 5, mask.shape[0], endpoint=False)
x, y = np.meshgrid(lin_x, lin_y)
avg = img.mean(axis=0).mean(axis=0)
# noise=[((perlin(x, y)+1)*128+avg[i]).astype(np.uint8) for i in range(3)]
noise = [((perlin(x, y) + 1) * 0.5 * 255).astype(np.uint8) for i in range(3)]
noise = np.stack(noise, axis=-1)
# mask=skimage.measure.block_reduce(mask,(8,8),np.min)
# mask=mask.repeat(8, axis=0).repeat(8, axis=1)
# mask_image=Image.fromarray(mask)
# mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 4))
# mask=np.array(mask_image)
nmask = mask.copy()
# nmask=nmask/255.0
nmask[mask > 0] = 1
img = nmask[:, :, np.newaxis] * img + (1 - nmask[:, :, np.newaxis]) * noise
# img=img.astype(np.uint8)
return img, mask
def gaussian_noise(img, mask):
noise = np.random.randn(mask.shape[0], mask.shape[1], 3)
noise = (noise + 1) / 2 * 255
noise = noise.astype(np.uint8)
nmask = mask.copy()
nmask[mask > 0] = 1
img = nmask[:, :, np.newaxis] * img + (1 - nmask[:, :, np.newaxis]) * noise
return img, mask
def cv2_telea(img, mask):
ret = cv2.inpaint(img, 255 - mask, 5, cv2.INPAINT_TELEA)
return ret, mask
def cv2_ns(img, mask):
ret = cv2.inpaint(img, 255 - mask, 5, cv2.INPAINT_NS)
return ret, mask
def patch_match_func(img, mask):
ret = patch_match.inpaint(img, mask=255 - mask, patch_size=3)
return ret, mask
def mean_fill(img, mask):
avg = img.mean(axis=0).mean(axis=0)
img[mask < 1] = avg
return img, mask
"""
Apache-2.0 license
https://github.com/hafriedlander/stable-diffusion-grpcserver/blob/main/sdgrpcserver/services/generate.py
https://github.com/parlance-zz/g-diffuser-bot/tree/g-diffuser-bot-beta2
_handleImageAdjustment
"""
try:
from sd_grpcserver.sdgrpcserver import images
import torch
from math import sqrt
def handleImageAdjustment(array, adjustments):
tensor = images.fromPIL(Image.fromarray(array))
for adjustment in adjustments:
which = adjustment[0]
if which == "blur":
sigma = adjustment[1]
direction = adjustment[2]
if direction == "DOWN" or direction == "UP":
orig = tensor
repeatCount=256
sigma /= sqrt(repeatCount)
for _ in range(repeatCount):
tensor = images.gaussianblur(tensor, sigma)
if direction == "DOWN":
tensor = torch.minimum(tensor, orig)
else:
tensor = torch.maximum(tensor, orig)
else:
tensor = images.gaussianblur(tensor, adjustment.blur.sigma)
elif which == "invert":
tensor = images.invert(tensor)
elif which == "levels":
tensor = images.levels(tensor, adjustment[1], adjustment[2], adjustment[3], adjustment[4])
elif which == "channels":
tensor = images.channelmap(tensor, [adjustment.channels.r, adjustment.channels.g, adjustment.channels.b, adjustment.channels.a])
elif which == "rescale":
self.unimp("Rescale")
elif which == "crop":
tensor = images.crop(tensor, adjustment.crop.top, adjustment.crop.left, adjustment.crop.height, adjustment.crop.width)
return np.array(images.toPIL(tensor)[0])
def g_diffuser(img,mask):
adjustments=[["blur",32,"UP"],["level",0,0.05,0,1]]
mask=handleImageAdjustment(mask,adjustments)
out_mask=handleImageAdjustment(mask,adjustments)
return img, mask
except:
def g_diffuser(img,mask):
return img,mask
def dummy_fill(img,mask):
return img,mask
functbl = {
"gaussian": gaussian_noise,
"perlin": perlin_noise,
"edge_pad": edge_pad,
"patchmatch": patch_match_func if patch_match_compiled else edge_pad,
"cv2_ns": cv2_ns,
"cv2_telea": cv2_telea,
"g_diffuser": g_diffuser,
"g_diffuser_lib": dummy_fill,
}
try:
from postprocess import PhotometricCorrection
correction_func = PhotometricCorrection()
except Exception as e:
print(e, "so PhotometricCorrection is disabled")
class DummyCorrection:
def __init__(self):
self.backend=""
pass
def run(self,a,b,**kwargs):
return b
correction_func=DummyCorrection()
class DummyInterrogator:
def __init__(self) -> None:
pass
def interrogate(self,pil):
return "Interrogator init failed"
if "taichi" in correction_func.backend:
import sys
import io
import base64
from PIL import Image
def base64_to_pil(base64_str):
data = base64.b64decode(str(base64_str))
pil = Image.open(io.BytesIO(data))
return pil
def pil_to_base64(out_pil):
out_buffer = io.BytesIO()
out_pil.save(out_buffer, format="PNG")
out_buffer.seek(0)
base64_bytes = base64.b64encode(out_buffer.read())
base64_str = base64_bytes.decode("ascii")
return base64_str
from subprocess import Popen, PIPE, STDOUT
class SubprocessCorrection:
def __init__(self):
self.backend=correction_func.backend
self.child= Popen(["python", "postprocess.py"], stdin=PIPE, stdout=PIPE, stderr=STDOUT)
def run(self,img_input,img_inpainted,mode):
if mode=="disabled":
return img_inpainted
base64_str_input = pil_to_base64(img_input)
base64_str_inpainted = pil_to_base64(img_inpainted)
try:
if self.child.poll():
self.child= Popen(["python", "postprocess.py"], stdin=PIPE, stdout=PIPE, stderr=STDOUT)
self.child.stdin.write(f"{base64_str_input},{base64_str_inpainted},{mode}\n".encode())
self.child.stdin.flush()
out = self.child.stdout.readline()
base64_str=out.decode().strip()
while base64_str and base64_str[0]=="[":
print(base64_str)
out = self.child.stdout.readline()
base64_str=out.decode().strip()
ret=base64_to_pil(base64_str)
except:
print("[PIE] not working, photometric correction is disabled")
ret=img_inpainted
return ret
correction_func = SubprocessCorrection()