This repository has been archived by the owner on Jan 13, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathcohortanalysis.py
776 lines (712 loc) · 34 KB
/
cohortanalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
import utils
import sqldbutils as dutil
import json
from os.path import join
import ontotextapi as oi
import random
import study_analyzer as sa
from ann_post_rules import AnnRuleExecutor
# import trans_anns.sentence_pattern as tssp
# import trans_anns.text_generaliser as tstg
import re
from analysis.semquery import SemEHRES
import analysis.cohort_analysis_helper as chelper
from datetime import datetime, timedelta
db_conn_type = 'mysql'
my_host = ''
my_user = ''
my_pwd = ''
my_db = ''
my_sock = ''
def get_doc_detail_by_id(doc_id, fulltext_date_by_doc_id):
sql = fulltext_date_by_doc_id.format(**{'doc_id': doc_id})
docs = []
dutil.query_data(sql, docs)
return docs
def load_all_docs():
sql = "select TextContent, Date, src_table, src_col, BrcId, CN_Doc_ID from sqlcris_user.KConnect.vw_hepcpos_docs"
docs = []
dutil.query_data(sql, docs)
return docs
def do_save_file(doc, folder):
utils.save_string(unicode(doc['TextContent'], errors='ignore'), join(folder, doc['CN_Doc_ID'] + '.txt'))
doc['TextContent'] = ''
doc['Date'] = long(doc['Date'])
utils.save_json_array(doc, join(folder, doc['CN_Doc_ID'] + '.json'))
def dump_doc_as_files(folder):
utils.multi_thread_tasking(load_all_docs(), 10, do_save_file, args=[folder])
def populate_patient_concept_table(cohort_name, concepts, out_file,
patients_sql, concept_doc_freq_sql):
patients = []
dutil.query_data(patients_sql.format(cohort_name), patients)
id2p = {}
for p in patients:
id2p[p['brcid']] = p
non_empty_concepts = []
for c in concepts:
patient_concept_freq = []
print 'querying %s...' % c
dutil.query_data(concept_doc_freq_sql.format(c, cohort_name), patient_concept_freq)
if len(patient_concept_freq) > 0:
non_empty_concepts.append(c)
for pc in patient_concept_freq:
id2p[pc['brcid']][c] = str(pc['num'])
label2cid = {}
concept_labels = []
for c in non_empty_concepts:
label = oi.get_concept_label(c)
label2cid[label] = c
concept_labels.append(label)
concept_labels = sorted(concept_labels)
s = '\t'.join(['brcid'] + concept_labels) + '\n'
for p in patients:
s += '\t'.join([p['brcid']] + [p[label2cid[k]] if label2cid[k] in p else '0' for k in concept_labels]) + '\n'
utils.save_string(s, out_file)
print 'done'
def generate_skip_term_constrain(study_analyzer,
skip_term_sql):
if len(study_analyzer.skip_terms) > 0:
return skip_term_sql.format(', '.join(['\'%s\'' % t for t in study_analyzer.skip_terms]))
else:
return ''
def populate_patient_study_table(cohort_name, study_analyzer, out_file,
patients_sql, term_doc_freq_sql):
"""
populate result table for a given study analyzer instance
:param cohort_name:
:param study_analyzer:
:param out_file:
:return:
"""
patients = []
dutil.query_data(patients_sql.format(cohort_name), patients)
id2p = {}
for p in patients:
id2p[p['brcid']] = p
non_empty_concepts = []
study_concepts = study_analyzer.study_concepts
for sc in study_concepts:
sc_key = '%s(%s)' % (sc.name, len(sc.concept_closure))
concept_list = ', '.join(['\'%s\'' % c for c in sc.concept_closure])
patient_term_freq = []
if len(sc.concept_closure) > 0:
data_sql = term_doc_freq_sql.format(**{'concepts': concept_list,
'cohort_id': cohort_name,
'extra_constrains':
' \n '.join(
[generate_skip_term_constrain(study_analyzer)]
+ [] if (study_analyzer.study_options is None or
study_analyzer.study_options['extra_constrains'] is None)
else study_analyzer.study_options['extra_constrains'])})
print data_sql
dutil.query_data(data_sql, patient_term_freq)
if len(patient_term_freq) > 0:
non_empty_concepts.append(sc_key)
for pc in patient_term_freq:
id2p[pc['brcid']][sc_key] = str(pc['num'])
concept_labels = sorted(non_empty_concepts)
s = '\t'.join(['brcid'] + concept_labels) + '\n'
for p in patients:
s += '\t'.join([p['brcid']] + [p[k] if k in p else '0' for k in concept_labels]) + '\n'
utils.save_string(s, out_file)
print 'done'
def populate_patient_study_table_post_ruled(cohort_name, study_analyzer, out_file, rule_executor,
sample_size, sample_out_file, ruled_ann_out_file,
patients_sql, term_doc_anns_sql, skip_term_sql,
db_conn_file, text_preprocessing=False):
"""
populate patient study result with post processing to remove unwanted mentions
:param cohort_name:
:param study_analyzer:
:param out_file:
:param rule_executor:
:param sample_size:
:param sample_out_file:
:return:
"""
patients = []
dutil.query_data(patients_sql.format(cohort_name), patients, dbconn=dutil.get_db_connection_by_setting(db_conn_file))
id2p = {}
for p in patients:
id2p[p['brcid']] = p
non_empty_concepts = []
study_concepts = study_analyzer.study_concepts
term_to_docs = {}
ruled_anns = []
positive_dumps = []
skip_terms_list = [t.lower() for t in rule_executor.skip_terms]
for sc in study_concepts:
positive_doc_anns = []
sc_key = '%s(%s)' % (sc.name, len(sc.concept_closure))
concept_list = ', '.join(['\'%s\'' % c for c in sc.concept_closure])
doc_anns = []
if len(sc.concept_closure) > 0:
sql_temp = term_doc_anns_sql
data_sql = sql_temp.format(**{'concepts': concept_list,
'cohort_id': cohort_name,
'extra_constrains':
' \n '.join(
[generate_skip_term_constrain(study_analyzer, skip_term_sql)]
+ [] if (study_analyzer.study_options is None or
study_analyzer.study_options['extra_constrains'] is None)
else study_analyzer.study_options['extra_constrains'])})
print data_sql
dutil.query_data(data_sql, doc_anns,
dbconn=dutil.get_db_connection_by_setting(db_conn_file))
if len(doc_anns) > 0:
p_to_dfreq = {}
counted_docs = set()
for ann in doc_anns:
p = ann['brcid']
d = ann['CN_Doc_ID']
if d in counted_docs:
continue
ruled = False
case_instance = ''
if not ruled:
# skip term rules
if 'string_orig' in ann and ann['string_orig'].lower() in skip_terms_list:
ruled = True
rule = 'skip-term'
case_instance = ann['string_orig']
if not ruled:
# string orign rules - not used now
ruled, case_instance = rule_executor.execute_original_string_rules(
ann['string_orig'] if 'string_orig' in ann
else ann['TextContent'][int(ann['start_offset']):int(ann['end_offset'])])
rule = 'original-string-rule'
if not ruled:
# post processing rules
ruled, case_instance, rule = \
rule_executor.execute(ann['TextContent'] if not text_preprocessing else
preprocessing_text_befor_rule_execution(ann['TextContent']),
int(ann['start_offset']),
int(ann['end_offset']),
string_orig=ann['string_orig'] if 'string_orig' in ann else None)
rule = 'semehr ' + rule
if not ruled:
# bio-yodie labels
if 'experiencer' in ann:
if ann['experiencer'].lower() != 'patient' or \
ann['temporality'].lower() != 'recent' or \
ann['negation'].lower() != 'affirmed':
ruled = True
case_instance = '\t'.join([ann['experiencer'], ann['temporality'], ann['negation']])
rule = 'yodie'
if ruled:
ruled_anns.append({'p': p, 'd': d, 'ruled': rule, 's': ann['start_offset'],
'e': ann['end_offset'],
'c': ann['inst_uri'],
'case-instance': case_instance,
'string_orig': ann['string_orig']
})
else:
counted_docs.add(d)
p_to_dfreq[p] = 1 if p not in p_to_dfreq else 1 + p_to_dfreq[p]
positive_doc_anns.append({'id': ann['CN_Doc_ID'],
'content': ann['TextContent'],
'annotations': [{'start': ann['start_offset'],
'end': ann['end_offset'],
'concept': ann['inst_uri'],
'string_orig': ann[
'string_orig'] if 'string_orig' in ann else ''}],
'doc_table': ann['src_table'],
'doc_col': ann['src_col']})
positive_dumps.append({'p': p, 'd': d, 's': ann['start_offset'],
'e': ann['end_offset'],
'c': ann['inst_uri'],
'string_orig': ann['string_orig']})
if len(counted_docs) > 0:
non_empty_concepts.append(sc_key)
for p in p_to_dfreq:
id2p[p][sc_key] = str(p_to_dfreq[p])
# save sample docs
if sample_size >= len(positive_doc_anns):
term_to_docs[sc_key] = positive_doc_anns
else:
sampled = []
for i in xrange(sample_size):
index = random.randrange(len(positive_doc_anns))
sampled.append(positive_doc_anns[index])
positive_doc_anns.pop(index)
term_to_docs[sc_key] = sampled
concept_labels = sorted(non_empty_concepts)
s = '\t'.join(['brcid'] + concept_labels) + '\n'
for p in patients:
s += '\t'.join([p['brcid']] + [p[k] if k in p else '0' for k in concept_labels]) + '\n'
utils.save_string(s, out_file)
utils.save_string('var sample_docs=' + json.dumps(convert_encoding(term_to_docs, 'cp1252', 'utf-8')), sample_out_file)
utils.save_json_array(convert_encoding(ruled_anns, 'cp1252', 'utf-8'), ruled_ann_out_file)
utils.save_json_array(positive_dumps, out_file + "_json")
print 'done'
def patient_timewindow_filter(fo, doc_id, pid):
if fo is None:
return False
fes = fo['es']
d = fes.get_doc_detail(str(doc_id))
if d is None:
print '%s/%s not found in full index' % (doc_id, pid)
return True
if 'document_field_filter' in fo:
for field in fo['document_field_filter']:
if field in d:
if d[field] in fo['document_field_filter'][field]:
return True
win = fo['p2win'][pid]
if win is None:
return False
d_date = datetime.strptime(d[fo['date_field']][0:19], fo['date_format'])
print d_date, win
t0 = datetime.strptime(win['t0'], fo['pt_date_format']) #+ timedelta(days=1)
t1 = datetime.strptime(win['t1'], fo['pt_date_format'])
if t0 <= d_date <= t1:
return False
else:
print '%s filtered [%s]' % (doc_id, d_date)
return True
def es_populate_patient_study_table_post_ruled(study_analyzer, out_file, rule_executor,
sample_size, sample_out_file, ruled_ann_out_file,
es_conn_file, text_preprocessing=False,
retained_patients_filter=None,
filter_obj=None):
"""
populate patient study result with post processing to remove unwanted mentions
:param cohort_name:
:param study_analyzer:
:param out_file:
:param rule_executor:
:param sample_size:
:param sample_out_file:
:return:
"""
es = SemEHRES.get_instance_by_setting_file(es_conn_file)
if filter_obj is not None:
fes = SemEHRES.get_instance_by_setting_file(filter_obj['doc_es_setting'])
patient_id_field = filter_obj['patient_id_field']
filter_obj['es'] = fes
if retained_patients_filter is None:
pids = es.search_by_scroll("*", es.patient_type)
else:
pids = retained_patients_filter
patients = [{'brcid': p} for p in pids]
id2p = {}
for p in patients:
id2p[p['brcid']] = p
print 'total patients is %s' % len(patients)
non_empty_concepts = []
study_concepts = study_analyzer.study_concepts
term_to_docs = {}
ruled_anns = []
for sc in study_concepts:
positive_doc_anns = []
sc_key = '%s(%s)' % (sc.name, len(sc.concept_closure))
print 'working on %s' % sc_key
if sc.name.startswith('ess_'):
non_empty_concepts.append(sc_key)
# elasticsearch concepts
p2docs = chelper.query_doc_by_search(es, fes, sc.concept_closure, patient_id_field,
retained_patients_filter=retained_patients_filter,
filter_obj=filter_obj, doc_filter_function=patient_timewindow_filter)
for pd in p2docs:
id2p[pd['pid']][sc_key] = str(len(pd['docs']))
# continue without to do the rest
continue
doc_anns = []
if len(sc.concept_closure) > 0:
doc_anns = chelper.query_doc_anns(es, sc.concept_closure, study_analyzer.skip_terms,
retained_patients_filter=retained_patients_filter,
filter_obj=filter_obj, doc_filter_function=patient_timewindow_filter
)
if len(doc_anns) > 0:
p_to_dfreq = {}
counted_docs = set()
for d in doc_anns:
doc = doc_anns[d]
p = doc['pid']
if d in counted_docs:
continue
for ann in doc['anns']:
ruled, matched, rule = rule_executor.execute(doc['text'] if not text_preprocessing else
preprocessing_text_befor_rule_execution(doc['text']),
int(ann['s']),
int(ann['e']))
if not ruled:
counted_docs.add(d)
p_to_dfreq[p] = 1 if p not in p_to_dfreq else 1 + p_to_dfreq[p]
positive_doc_anns.append({'id': d,
'content': doc['text'],
'annotations': [{'start': ann['s'],
'end': ann['e'],
'concept': ann['inst']}]})
else:
ruled_anns.append({'p': p, 'd': d, 'ruled': rule})
if len(counted_docs) > 0:
non_empty_concepts.append(sc_key)
for p in p_to_dfreq:
id2p[p][sc_key] = str(p_to_dfreq[p])
# save sample docs
if sample_size >= len(positive_doc_anns):
term_to_docs[sc_key] = positive_doc_anns
else:
sampled = []
for i in xrange(sample_size):
index = random.randrange(len(positive_doc_anns))
sampled.append(positive_doc_anns[index])
positive_doc_anns.pop(index)
term_to_docs[sc_key] = sampled
concept_labels = sorted(non_empty_concepts)
s = '\t'.join(['brcid'] + concept_labels) + '\n'
for p in patients:
s += '\t'.join([p['brcid']] + [p[k] if k in p else '0' for k in concept_labels]) + '\n'
utils.save_string(s, out_file)
utils.save_json_array(convert_encoding(term_to_docs, 'cp1252', 'utf-8'), sample_out_file)
utils.save_json_array(convert_encoding(ruled_anns, 'cp1252', 'utf-8'), ruled_ann_out_file)
print 'done'
def preprocessing_text_befor_rule_execution(t):
return re.sub(r'\s{2,}', ' ', t)
def convert_encoding(dic_obj, orig, target):
if isinstance(dic_obj, str):
return dic_obj.decode(orig).encode(target)
elif isinstance(dic_obj, list):
ret = []
for itm in dic_obj:
ret.append(convert_encoding(itm, orig, target))
return ret
elif isinstance(dic_obj, dict):
for k in dic_obj:
dic_obj[k] = convert_encoding(dic_obj[k], orig, target)
return dic_obj
else:
# print '%s not supported for conversion' % isinstance(dic_obj[k], dict)
return dic_obj
def random_extract_annotated_docs(cohort_name, study_analyzer, out_file,
docs_by_term_sql, docs_by_cohort_sql, docs_by_ids_sql,
sample_size=5):
term_to_docs = {}
study_concepts = study_analyzer.study_concepts
is_NOT_cohort_based = study_analyzer.study_options is None \
or study_analyzer.study_options['sample_non_hits'] is None \
or (not study_analyzer.study_options['sample_non_hits'])
for sc in study_concepts:
sc_key = '%s(%s)' % (sc.name, len(sc.concept_closure))
concept_list = ', '.join(['\'%s\'' % c for c in sc.concept_closure])
doc_ids = []
if len(sc.concept_closure) > 0:
if is_NOT_cohort_based:
dutil.query_data(
docs_by_term_sql.format(
**{'concepts': concept_list,
'cohort_id': cohort_name,
'extra_constrains':
' \n '.join(
[generate_skip_term_constrain(study_analyzer)]
+ [] if (study_analyzer.study_options is None or
study_analyzer.study_options['extra_constrains'] is None)
else study_analyzer.study_options['extra_constrains'])}),
doc_ids)
else:
doc_sql = docs_by_cohort_sql.format(
**{'cohort_id': cohort_name,
'extra_constrains':
' and '.join(
[generate_skip_term_constrain(study_analyzer)]
+ [] if (study_analyzer.study_options is None or
study_analyzer.study_options['extra_constrains'] is None)
else study_analyzer.study_options['extra_constrains'])})
print doc_sql
dutil.query_data(doc_sql, doc_ids)
if len(doc_ids) > 0:
sample_ids = []
if len(doc_ids) <= sample_size:
sample_ids = [r['CN_Doc_ID'] for r in doc_ids]
else:
for i in xrange(sample_size):
index = random.randrange(len(doc_ids))
sample_ids.append(doc_ids[index]['CN_Doc_ID'])
del doc_ids[index]
doc_list = ', '.join(['\'%s\'' % d for d in sample_ids])
docs = []
doc_sample_sql = docs_by_ids_sql.format(**{'docs': doc_list,
'concepts': concept_list,
'extra_constrains': generate_skip_term_constrain(study_analyzer)})
print doc_sample_sql
dutil.query_data(doc_sample_sql,
docs)
doc_objs = []
prev_doc_id = ''
doc_obj = None
for d in docs:
if prev_doc_id != d['CN_Doc_ID']:
doc_obj = {'id': d['CN_Doc_ID'], 'content': d['TextContent'], 'annotations': [],
'doc_table': d['src_table'], 'doc_col': d['src_col']}
doc_objs.append(doc_obj)
prev_doc_id = d['CN_Doc_ID']
doc_obj['annotations'].append({'start': d['start_offset'],
'end': d['end_offset'],
'concept': d['inst_uri']})
term_to_docs[sc.name] = doc_objs
if not is_NOT_cohort_based:
break
utils.save_json_array(term_to_docs, out_file)
print 'done'
def do_action_trans_docs(docs, nlp,
doc_ann_sql_template,
doc_content_sql_template,
action_trans_update_sql_template,
db_conn_file,
corpus_predictor):
"""
do actionable transparency prediction on a batch of docs.
this function is to supposed to be called in a single thread
:param docs:
:param nlp:
:param doc_ann_sql_template:
:param doc_content_sql_template:
:param action_trans_update_sql_template:
:param db_conn_file:
:param corpus_predictor:
:return:
"""
# self_nlp = tstg.load_mode('en')
for doc_id in docs:
doc_anns = []
dutil.query_data(doc_ann_sql_template.format(doc_id['docid']),
doc_anns,
dbconn=dutil.get_db_connection_by_setting(db_conn_file))
doc_anns = [{'s': int(ann['s']), 'e': int(ann['e']),
'AnnId': str(ann['AnnId']), 'signed_label':'', 'gt_label':'', 'action_trans': ann['action_trans']} for ann in doc_anns]
if len(doc_anns) == 0:
continue
if doc_anns[0]['action_trans'] is not None:
print 'found trans %s of first ann, skipping doc' % doc_anns[0]['action_trans']
continue
doc_container = []
dutil.query_data(doc_content_sql_template.format(doc_id['docid']),
doc_container,
dbconn=dutil.get_db_connection_by_setting(db_conn_file))
ptns = tstg.doc_processing(nlp,
unicode(doc_container[0]['content']),
doc_anns,
doc_id['docid'])
# print 'doc %s read/model created, predicting...'
for inst in ptns:
acc = corpus_predictor.predcit(inst)
anns = inst.annotations
sql = action_trans_update_sql_template.format(**{'acc': acc, 'AnnId': anns[0]['AnnId']})
# print 'executing %s' % sql
dutil.query_data(sql, container=None, dbconn=dutil.get_db_connection_by_setting(db_conn_file))
def action_transparentise(cohort_name, db_conn_file,
cohort_doc_sql_template,
doc_ann_sql_template,
doc_content_sql_template,
action_trans_update_sql_template,
corpus_trans_file):
"""
use actionable transparency model to create confidence value for each annotations;
this method split all cohort documents into batches that are to processed in multiple threads
:param cohort_name:
:param db_conn_file:
:param cohort_doc_sql_template:
:param doc_ann_sql_template:
:param doc_content_sql_template:
:param action_trans_update_sql_template:
:param corpus_trans_file:
:return:
"""
docs = []
dutil.query_data(cohort_doc_sql_template.format(cohort_name), docs,
dbconn=dutil.get_db_connection_by_setting(db_conn_file))
batch_size = 500
batches = []
for i in range(0, len(docs), batch_size):
batches.append(docs[i:i+batch_size])
nlp = tstg.load_mode('en')
corpus_predictor = tssp.CorpusPredictor.load_corpus_model(corpus_trans_file)
for batch in batches:
print 'working on %s/%s batch' % (i, len(batches))
try:
do_action_trans_docs(batch,
nlp,
doc_ann_sql_template,
doc_content_sql_template,
action_trans_update_sql_template,
db_conn_file,
corpus_predictor)
except Exception as e:
print 'error processing [%s]' % e
i += 1
#utils.multi_thread_tasking(batches, 1, do_action_trans_docs,
# args=[nlp,
# doc_ann_sql_template,
# doc_content_sql_template,
# action_trans_update_sql_template,
# db_conn_file,
# corpus_predictor
# ])
print 'all anns transparentised'
def do_put_line(p, concept_labels, container):
print 'working on %s' % p['brcid']
container.append('\t'.join([p['brcid']] + [str(p[k]) if k in p else '0' for k in concept_labels]))
def generate_result_in_one_iteration(cohort_name, study_analyzer, out_file,
sample_size, sample_out_file,
doc_to_brc_sql, brc_sql, anns_iter_sql, skip_term_sql, doc_content_sql,
db_conn_file):
"""
generate result in one iteration over all annotations. this is supposed to be much faster when working on
large study concepts. But post-processing using rules not supported now
:param cohort_name:
:param study_analyzer:
:param out_file:
:param sample_size:
:param sample_out_file:
:param doc_to_brc_sql:
:param brc_sql:
:param anns_iter_sql:
:param skip_term_sql:
:param doc_content_sql:
:param db_conn_file:
:return:
"""
# populate concept to anns maps
sc2anns = {}
for sc in study_analyzer.study_concepts:
sc2anns[sc.name] = []
# populate patient list
print 'populating patient list...'
patients = {}
rows_container = []
dutil.query_data(brc_sql.format(cohort_name), rows_container,
dbconn=dutil.get_db_connection_by_setting(db_conn_file))
for r in rows_container:
patients[r['brcid']] = {'brcid': r['brcid']}
# populate document id to patient id dictionary
print 'populating doc to patient map...'
rows_container = []
dutil.query_data(doc_to_brc_sql.format(cohort_name), rows_container,
dbconn=dutil.get_db_connection_by_setting(db_conn_file))
doc2brc = {}
for dp in rows_container:
doc2brc[dp['doc_id']] = dp['brcid']
# query annotations
print 'iterating annotations...'
rows_container = []
dutil.query_data(anns_iter_sql.format(**{'cohort_id': cohort_name,
'extra_constrains':
' \n '.join(
[generate_skip_term_constrain(study_analyzer, skip_term_sql)]
+ [] if (study_analyzer.study_options is None or
study_analyzer.study_options['extra_constrains'] is None)
else study_analyzer.study_options['extra_constrains'])}),
rows_container,
dbconn=dutil.get_db_connection_by_setting(db_conn_file))
for r in rows_container:
concept_id = r['inst_uri']
brcid = doc2brc[r['doc_id']] if r['doc_id'] in doc2brc else None
if brcid is None:
print 'doc %s not matched to a patient!!!' % r['doc_id']
continue
patient = patients[brcid] if brcid in patients else None
if patient is None:
print 'brc id %s not matched a patient!!!' % brcid
continue
# get matched study concepts
for sc in study_analyzer.study_concepts:
if concept_id in sc.concept_closure:
patient[sc.name] = (patient[sc.name] + 1) if sc.name in patient else 1
sc2anns[sc.name].append({'ann_id': r['ann_id'], 'doc_id': r['doc_id'], 'concept_id': concept_id,
'start': r['start_offset'], 'end': r['end_offset']})
# generate result table
print 'generate result table...'
concept_labels = sorted([k for k in sc2anns])
s = '\t'.join(['brcid'] + concept_labels) + '\n'
lines = []
utils.multi_thread_tasking([patients[pid] for pid in patients], 40, do_put_line,
args=[concept_labels, lines])
s += '\n'.join(lines)
utils.save_string(s, out_file)
# generate sample annotations
term_to_docs = {}
for concept in sc2anns:
ann_ids = sc2anns[concept]
sample_ids = []
if len(ann_ids) <= sample_size:
sample_ids = ann_ids
else:
for i in xrange(sample_size):
index = random.randrange(len(ann_ids))
sample_ids.append(ann_ids[index])
del ann_ids[index]
term_to_docs[concept] = sample_ids
# query doc contents
print 'populating term to sampled anns...'
term_to_sampled = {}
for term in term_to_docs:
sample_ids = term_to_docs[term]
if len(sample_ids) <=0 :
continue
sample_doc_ids = ['\'' + s['doc_id'] + '\'' for s in sample_ids]
rows_container = []
dutil.query_data(doc_content_sql.format(','.join(sample_doc_ids)), rows_container,
dbconn=dutil.get_db_connection_by_setting(db_conn_file))
doc_to_content = {}
for r in rows_container:
doc_to_content[r['doc_id']] = r['TextContent']
term_sampled = []
for s in sample_ids:
term_sampled.append({'id': s['doc_id'],
'content': doc_to_content[s['doc_id']],
'annotations': [{'start': s['start'],
'end': s['end'],
'concept': s['concept_id']}]})
term_to_sampled[term] = term_sampled
utils.save_json_array(convert_encoding(term_to_sampled, 'cp1252', 'utf-8'), sample_out_file)
def complete_sample_ann_data(key_anns, complete_sql, db_conn_file, container):
k = key_anns[0]
anns = key_anns[1]
for ann in anns:
rows_container = []
dutil.query_data(complete_sql.format(**{'doc_id': ann['id'],
'start': ann['annotations'][0]['start'],
'end': ann['annotations'][0]['end'],
'concept': ann['annotations'][0]['concept']}),
rows_container,
dbconn=dutil.get_db_connection_by_setting(db_conn_file))
if len(rows_container) > 0:
ann['annotations'][0]['string_orig'] = rows_container[0]['string_orig']
if 'action_trans' in rows_container[0]:
ann['annotations'][0]['confidence'] = rows_container[0]['action_trans']
container.append([k, anns])
def complete_samples(sample_file, complete_sql, db_conn_file, out_file):
ann_prefix = 'var sample_docs='
anns_str = utils.read_text_file_as_string(sample_file)
if anns_str.startswith(ann_prefix):
anns_str = anns_str[len(ann_prefix):]
anns = json.loads(anns_str)
# anns = utils.load_json_data(sample_file)
key_anns = []
for k in anns:
key_anns.append((k, anns[k]))
container = []
utils.multi_thread_tasking(key_anns, 40, complete_sample_ann_data,
args=[complete_sql, db_conn_file, container])
results = {}
for r in container:
results[r[0]] = r[1]
utils.save_string(ann_prefix + json.dumps(results), out_file)
print 'done'
def test_es_analysis():
study_analyzer = sa.StudyAnalyzer('aaa')
study_concept = sa.StudyConcept('depression', ['depression'])
study_analyzer.skip_terms = ['Recurrent major depressive episodes']
study_concept.concept_closure = ["C0154409", "C0038050"]
study_analyzer.add_concept(study_concept)
folder = "./studies/COMOB_SD/"
ruler = AnnRuleExecutor()
rules = utils.load_json_data(join(folder, 'post_filter_rules.json'))
for r in rules:
ruler.add_filter_rule(r['offset'], r['regs'])
es_populate_patient_study_table_post_ruled(study_analyzer, "./out.txt", ruler, 20,
"./sample_out.txt", "./ruled.txt",
"./index_settings/sem_idx_setting.json")
if __name__ == "__main__":
test_es_analysis()