forked from camerynbrock/ci_impact_indicators
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhansen_prep.R
161 lines (122 loc) · 3.9 KB
/
hansen_prep.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Hansen data download and prep
# Note this script takes ~4 days to run
library(tidyverse)
library(raster)
library(terra)
library(sf)
library(gfcanalysis)
template <- rast("~/Conservation International/Data/land_1km_eck4.tif")
hansen_folder <- "misc/hansen_fc_tiles/"
# only have to do once
# sites_poly <- read_sf(
# dsn = "data/ci_sites",
# layer = "FY2022_Sites") %>%
# filter(biome != "Marine")
# hansen_tiles <- calc_gfc_tiles(sites_poly)
# download_tiles(
# tiles = hansen_tiles,
# output_folder = hansen_folder,
# images = c("treecover2000", "lossyear"),
# dataset = "GFC-2022-v1.10")
# # get rid of tiles that are just ocean
# tile_names <- list.files(hansen_folder,
# pattern = "lossyear") %>%
# str_sub(., start = 32, end = -5)
#
# for(i in seq_along(tile_names)){
#
# print(paste0(i, "/", length(tile_names)))
#
# tile_name <- tile_names[[i]]
#
# tc_2000 <- rast(paste0(
# hansen_folder, "Hansen_GFC-2022-v1.10_treecover2000_", tile_name, ".tif"))
#
# # remove tile if no values in it
# if(global(tc_2000, "max", na.rm = TRUE)$max == 0) {
# file.remove(paste0(
# hansen_folder, "Hansen_GFC-2022-v1.10_treecover2000_", tile_name, ".tif"))
# file.remove(paste0(
# hansen_folder, "Hansen_GFC-2022-v1.10_lossyear_", tile_name, ".tif"))
#
# print(paste0("...removed"))
# }
# }
tile_names <- list.files(hansen_folder,
pattern = "lossyear") %>%
str_sub(., start = 32, end = -5)
start_time <- Sys.time() # get start time
# years 2009 to 2022
for(y in 1:22){
year <- case_when(y < 10 ~ paste0("200", y),
T ~ paste0("20", y))
rast_list <- list()
for(i in seq_along(tile_names)){
print(paste0("Year ", year, "... ", i, "/", length(tile_names)))
tile_name <- tile_names[[i]]
tc_2000 <- rast(paste0(
hansen_folder, "Hansen_GFC-2022-v1.10_treecover2000_", tile_name, ".tif")) %>%
aggregate(fact = 30,
fun = "mean",
cores = 8,
na.rm = TRUE)
ly <- rast(paste0(
hansen_folder, "Hansen_GFC-2022-v1.10_lossyear_", tile_name, ".tif")) %>%
classify(
matrix(data = c(
0, y, 1,
y, 23, 0),
ncol = 3,
byrow = TRUE),
include.lowest = FALSE) %>%
aggregate(fact = 30,
fun = "mean",
cores = 8,
na.rm = TRUE) * 100
# remove forest from 2000 treecover dataset from loss up to year y
tc_y <- tc_2000 - ly
tc_y[tc_y < 0] <- 0
rast_list[i] <- tc_y
# if(i == 1){
# ty_mosaic <- tc_y
#
# } else {
# ty_mosaic <- merge(ty_mosaic, tc_y)
# }
gc()
tmpFiles(remove = TRUE)
}
mosaic <- merge(sprc(rast_list))
mosaic_proj <- mosaic %>%
project(template,
align = TRUE,
method = "bilinear",
threads = TRUE) %>%
extend(template) %>%
crop(template)
names(mosaic_proj) <- paste0("fc_", str_sub(year, start = 3))
writeRaster(
mosaic_proj,
paste0("avoided_emissions/data/covariate_forest_cover_", year, ".tif"),
overwrite = TRUE)
gc()
# print elapsed time
print(paste0("Start time: ", start_time))
print(paste0("Current time: ", Sys.time()))
}
# now get forest change from those outputs
for(y in 1:22){
year <- as.numeric(case_when(y < 10 ~ paste0("200", y),
T ~ paste0("20", y)))
print(year)
year_before <- year - 1
mosaic <- rast(
paste0("avoided_emissions/data/covariate_forest_cover_", year, ".tif"))
mosaic_before <- rast(
paste0("avoided_emissions/data/covariate_forest_cover_", year_before, ".tif"))
change <- mosaic - mosaic_before
writeRaster(
change,
paste0("avoided_emissions/data/covariate_forest_cover_change_", year, ".tif"),
overwrite = TRUE)
}