-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbm25_index.py
211 lines (178 loc) · 6.55 KB
/
bm25_index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"""
Sets up a BM25 index over the abstracts and results of the data.
"""
# data loading and storage
import pandas as pd
import numpy as np
import os
from pathlib import Path
import json
from copy import deepcopy
import pickle
# preprocessing
import string
import nltk
# model
from rank_bm25 import BM25Okapi
# other
from tqdm import tqdm
tqdm.pandas()
from argparse import ArgumentParser
PUNCTUATION_REMOVER = str.maketrans('', '', string.punctuation)
STOPWORDS = set(nltk.corpus.stopwords.words('english'))
def format_name(author):
"""
Formats the author's name from a JSON file in the CORD-19 dataset.
"""
middle_name = " ".join(author['middle'])
if author['middle']:
return " ".join([author['first'], middle_name, author['last']])
else:
return " ".join([author['first'], author['last']])
def format_affiliation(affiliation):
"""
Formats the paper affiliations from a JSON file in the CORD-19 dataset.
"""
text = []
location = affiliation.get('location')
if location:
text.extend(list(affiliation['location'].values()))
institution = affiliation.get('institution')
if institution:
text = [institution] + text
return ", ".join(text)
def format_authors(authors, with_affiliation=False):
"""
Formats the paper authors from a JSON file in the CORD-19 dataset.
"""
name_ls = []
for author in authors:
name = format_name(author)
if with_affiliation:
affiliation = format_affiliation(author['affiliation'])
if affiliation:
name_ls.append(f"{name} ({affiliation})")
else:
name_ls.append(name)
else:
name_ls.append(name)
return ", ".join(name_ls)
def format_body(body_text):
"""
Formats the body of the paper from the JSON file.
"""
texts = [(di['section'], di['text']) for di in body_text]
texts_di = {di['section']: "" for di in body_text}
for section, text in texts:
texts_di[section] += text
body = ""
for section, text in texts_di.items():
body += section
body += "\n\n"
body += text
body += "\n\n"
return body
def paragraphize_body(body_text):
paragraphs = [di['text'] for di in body_text if len(di['text'].split()) > 1]
return paragraphs
def format_bib(bibs):
"""
Formats the bibliography from the JSON file.
"""
if type(bibs) == dict:
bibs = list(bibs.values())
bibs = deepcopy(bibs)
formatted = []
for bib in bibs:
bib['authors'] = format_authors(
bib['authors'],
with_affiliation=False
)
formatted_ls = [str(bib[k]) for k in ['title', 'authors', 'venue', 'year']]
formatted.append(", ".join(formatted_ls))
return "; ".join(formatted)
def load_files(dirname):
"""
Loads all JSON files recurisvely in a directory. Returns a list of JSONs.
"""
raw_files = []
for path in tqdm(list(Path(dirname).rglob('*.json'))):
file = json.load(open(path, 'rb'))
raw_files.append(file)
return raw_files
def generate_clean_df(all_files, paragraphs=True):
"""
Generates a Pandas DataFrame from the raw file data created by load_files().
"""
cleaned_files = []
for file in tqdm(all_files):
features = [
file['paper_id'],
file['metadata']['title'],
format_authors(file['metadata']['authors']),
format_authors(file['metadata']['authors'],
with_affiliation=True),
format_body(file['abstract']),
# format_bib(file['bib_entries']),
# file['metadata']['authors'],
# file['bib_entries']
]
if paragraphs:
all_paragraphs = paragraphize_body(file['body_text'])
for p in all_paragraphs:
new_features = features.copy()
new_features.append(p)
cleaned_files.append(new_features)
else:
features.append(format_body(file['body_text']))
cleaned_files.append(features)
col_names = ['paper_id', 'title', 'authors',
'affiliations', 'abstract', 'text']
# 'bibliography','raw_authors','raw_bibliography']
clean_df = pd.DataFrame(cleaned_files, columns=col_names)
clean_df['abstract'] = clean_df['abstract'].fillna(clean_df['text']) # fall back to full-text
clean_df = clean_df.drop_duplicates(subset='title')
return clean_df
class BM25Index:
def __init__(self, df):
self.data = df
self.clean_data = df.abstract.progress_apply(clean_text).tolist()
self.index = BM25Okapi(self.clean_data)
def search(self, query, k=10):
processed = clean_text(query)
doc_scores = self.index.get_scores(processed)
ind = np.argsort(doc_scores)[::-1][:k]
results = self.data.iloc[ind].copy()
results['score'] = doc_scores[ind]
return results
def clean_text(text):
uncased = text.translate(PUNCTUATION_REMOVER).lower()
tokens = [token for token in nltk.word_tokenize(uncased)
if len(token) > 1
and not token in STOPWORDS
and not (token.isnumeric() and len(token) != 4)
and (not token.isnumeric() or token.isalpha())]
return tokens
if __name__ == '__main__':
psr = ArgumentParser()
psr.add_argument("--data-dir", type=str, default="./data/")
psr.add_argument("--rebuild-index", action='store_true', default=False)
psr.add_argument("--index-path", type=str, default="bm25.pkl")
psr.add_argument("--result-path-base", type=str, default="results/query")
psr.add_argument("--query", type=str, default="cruise ship")
psr.add_argument("--nresults", type=int, default=5)
psr.add_argument("--paragraphs", action='store_true', default=True)
args = psr.parse_args()
if args.rebuild_index or not os.path.isfile(args.index_path):
files = load_files(args.data_dir)
print("Loaded {} files".format(len(files)))
df = generate_clean_df(files, paragraphs=args.paragraphs)
search_idx = BM25Index(df)
print("Caching index...")
pickle.dump(search_idx, open(args.index_path, "wb"))
else:
print("Loading cached index...")
search_idx = pickle.load(open(args.index_path, "rb"))
results = search_idx.search(args.query)
print(results[['title','score']])
results.to_csv("_".join([args.result_path_base, args.query.replace(" ","_"), "top{}".format(args.nresults)]) + ".csv", index=False)