This repository has been archived by the owner on Jul 2, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcw_tiler_Demo.py
77 lines (54 loc) · 2.76 KB
/
cw_tiler_Demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Import base tools
## Note, for mac osx compatability import something from shapely.geometry before importing fiona or geopandas
## https://github.com/Toblerity/Shapely/issues/553 * Import shapely before rasterio or fioana
from shapely import geometry
import rasterio
import random
from cw_tiler import main
from cw_tiler import utils
from cw_tiler import vector_utils
import numpy as np
import os
from tqdm import tqdm
# Setting Certificate Location for Ubuntu/Mac OS locations (Rasterio looks for certs in centos locations)
os.environ['CURL_CA_BUNDLE']='/etc/ssl/certs/ca-certificates.crt'
## give location to SpaceNet 8-Band PanSharpened Geotiff on s3
#spacenetPath = "s3://spacenet-dataset/AOI_2_Vegas/srcData/rasterData/AOI_2_Vegas_MUL-PanSharpen_Cloud.tif"
spacenetPath = "/home/dlindenbaum/datastorage/spacenet_sample/AOI_2_Vegas_MUL-PanSharpen_Cloud.tif"
osm_labels_path = "./tests/fixtures/my-bucket/spacenet_test/las-vegas_nevada_osm_buildings.geojson"
## Prep files for UTM
with rasterio.open(spacenetPath) as src:
# Get Lat, Lon bounds of the Raster (src)
wgs_bounds = utils.get_wgs84_bounds(src)
# Use Lat, Lon location of Image to get UTM Zone/ UTM projection
utm_crs = utils.calculate_UTM_crs(wgs_bounds)
# Calculate Raster bounds in UTM coordinates
utm_bounds = utils.get_utm_bounds(src, utm_crs)
## read vector file
gdf = vector_utils.read_vector_file(osm_labels_path)
gdf.head()
gdf_utm = vector_utils.transformToUTM(gdf, utm_crs=utm_crs)
# open s3 Location
# Each grid starting point will be spaced 400m apart
stride_size_meters = 400
# Each grid cell will be 400m on a side
cell_size_meters = 400
# Specify the number of pixels in a tile cell_size_meters/tile_size_pixels == Pixel_Size_Meters
tile_size_pixels = 1200
with rasterio.open(spacenetPath) as src:
# Generate list of cells to read from utm_bounds
cells_list = main.calculate_analysis_grid(utm_bounds, stride_size_meters=stride_size_meters, cell_size_meters=cell_size_meters)
# select random cell
for idx in tqdm(range(100)):
random_cell = random.choice(cells_list)
ll_x, ll_y, ur_x, ur_y = random_cell
# Get Tile from bounding box
tile, mask, window_transform = main.tile_utm(src, ll_x, ll_y, ur_x, ur_y,
indexes=None,
tilesize=tile_size_pixels,
nodata=None,
alpha=None,
dst_crs=utm_crs)
#print(np.shape(tile))
## Get Vector Information from bounding box
small_gdf = vector_utils.vector_tile_utm(gdf_utm, tile_bounds=[ll_x, ll_y, ur_x, ur_y])