-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_model.py
161 lines (130 loc) · 6.07 KB
/
example_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import pandas as pd
from lightgbm import LGBMRegressor
import gc
import json
from pathlib import Path
from numerapi import NumerAPI
from utils import (
save_model,
load_model,
neutralize,
get_biggest_change_features,
validation_metrics,
ERA_COL,
DATA_TYPE_COL,
TARGET_COL,
EXAMPLE_PREDS_COL
)
# download all the things
napi = NumerAPI()
current_round = napi.get_current_round()
# Tournament data changes every week so we specify the round in their name. Training
# and validation data only change periodically, so no need to download them every time.
print('Downloading dataset files...')
Path("./v4").mkdir(parents=False, exist_ok=True)
napi.download_dataset("v4/train.parquet")
napi.download_dataset("v4/validation.parquet")
napi.download_dataset("v4/live.parquet", f"v4/live_{current_round}.parquet")
napi.download_dataset("v4/validation_example_preds.parquet")
napi.download_dataset("v4/features.json")
print('Reading minimal training data')
# read the feature metadata and get a feature set (or all the features)
with open("v4/features.json", "r") as f:
feature_metadata = json.load(f)
# features = list(feature_metadata["feature_stats"].keys()) # get all the features
# features = feature_metadata["feature_sets"]["small"] # get the small feature set
features = feature_metadata["feature_sets"]["medium"] # get the medium feature set
# read in just those features along with era and target columns
read_columns = features + [ERA_COL, DATA_TYPE_COL, TARGET_COL]
# note: sometimes when trying to read the downloaded data you get an error about invalid magic parquet bytes...
# if so, delete the file and rerun the napi.download_dataset to fix the corrupted file
training_data = pd.read_parquet('v4/train.parquet',
columns=read_columns)
validation_data = pd.read_parquet('v4/validation.parquet',
columns=read_columns)
live_data = pd.read_parquet(f'v4/live_{current_round}.parquet',
columns=read_columns)
# pare down the number of eras to every 4th era
# every_4th_era = training_data[ERA_COL].unique()[::4]
# training_data = training_data[training_data[ERA_COL].isin(every_4th_era)]
# getting the per era correlation of each feature vs the target
all_feature_corrs = training_data.groupby(ERA_COL).apply(
lambda era: era[features].corrwith(era[TARGET_COL])
)
# find the riskiest features by comparing their correlation vs
# the target in each half of training data; we'll use these later
riskiest_features = get_biggest_change_features(all_feature_corrs, 50)
# "garbage collection" (gc) gets rid of unused data and frees up memory
gc.collect()
model_name = f"model_target"
print(f"Checking for existing model '{model_name}'")
model = load_model(model_name)
if not model:
print(f"model not found, creating new one")
params = {"n_estimators": 2000,
"learning_rate": 0.01,
"max_depth": 5,
"num_leaves": 2 ** 5,
"colsample_bytree": 0.1}
model = LGBMRegressor(**params)
# train on all of train and save the model so we don't have to train next time
model.fit(training_data.filter(like='feature_', axis='columns'),
training_data[TARGET_COL])
print(f"saving new model: {model_name}")
save_model(model, model_name)
gc.collect()
nans_per_col = live_data[live_data["data_type"] == "live"][features].isna().sum()
# check for nans and fill nans
if nans_per_col.any():
total_rows = len(live_data[live_data["data_type"] == "live"])
print(f"Number of nans per column this week: {nans_per_col[nans_per_col > 0]}")
print(f"out of {total_rows} total rows")
print(f"filling nans with 0.5")
live_data.loc[:, features] = live_data.loc[:, features].fillna(0.5)
else:
print("No nans in the features this week!")
# double check the feature that the model expects vs what is available to prevent our
# pipeline from failing if Numerai adds more data and we don't have time to retrain!
model_expected_features = model.booster_.feature_name()
if set(model_expected_features) != set(features):
print(f"New features are available! Might want to retrain model {model_name}.")
validation_data.loc[:, f"preds_{model_name}"] = model.predict(
validation_data.loc[:, model_expected_features])
live_data.loc[:, f"preds_{model_name}"] = model.predict(
live_data.loc[:, model_expected_features])
gc.collect()
# neutralize our predictions to the riskiest features
validation_data[f"preds_{model_name}_neutral_riskiest_50"] = neutralize(
df=validation_data,
columns=[f"preds_{model_name}"],
neutralizers=riskiest_features,
proportion=1.0,
normalize=True,
era_col=ERA_COL
)
live_data[f"preds_{model_name}_neutral_riskiest_50"] = neutralize(
df=live_data,
columns=[f"preds_{model_name}"],
neutralizers=riskiest_features,
proportion=1.0,
normalize=True,
era_col=ERA_COL
)
model_to_submit = f"preds_{model_name}_neutral_riskiest_50"
# rename best model to "prediction" and rank from 0 to 1 to meet upload requirements
validation_data["prediction"] = validation_data[model_to_submit].rank(pct=True)
live_data["prediction"] = live_data[model_to_submit].rank(pct=True)
validation_data["prediction"].to_csv(f"validation_predictions_{current_round}.csv")
live_data["prediction"].to_csv(f"live_predictions_{current_round}.csv")
validation_preds = pd.read_parquet('v4/validation_example_preds.parquet')
validation_data[EXAMPLE_PREDS_COL] = validation_preds["prediction"]
# get some stats about each of our models to compare...
# fast_mode=True so that we skip some of the stats that are slower to calculate
validation_stats = validation_metrics(validation_data, [model_to_submit, f"preds_{model_name}"], example_col=EXAMPLE_PREDS_COL, fast_mode=True, target_col=TARGET_COL)
print(validation_stats[["mean", "sharpe"]].to_markdown())
print(f'''
Done! Next steps:
1. Go to numer.ai/tournament (make sure you have an account)
2. Submit validation_predictions_{current_round}.csv to the diagnostics tool
3. Submit tournament_predictions_{current_round}.csv to the "Upload Predictions" button
''')