-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
374 lines (308 loc) · 13.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import numpy as np
import pandas as pd
import scipy
from halo import Halo
from tqdm import tqdm
from pathlib import Path
import json
from scipy.stats import skew
ERA_COL = "era"
TARGET_COL = "target_cyrus_v4_20"
DATA_TYPE_COL = "data_type"
EXAMPLE_PREDS_COL = "example_preds"
spinner = Halo(text="", spinner="dots")
MODEL_FOLDER = "models"
MODEL_CONFIGS_FOLDER = "model_configs"
PREDICTION_FILES_FOLDER = "prediction_files"
def save_prediction(df, name):
try:
Path(PREDICTION_FILES_FOLDER).mkdir(exist_ok=True, parents=True)
except Exception as ex:
pass
df.to_csv(f"{PREDICTION_FILES_FOLDER}/{name}.csv", index=True)
def save_model(model, name):
try:
Path(MODEL_FOLDER).mkdir(exist_ok=True, parents=True)
except Exception as ex:
pass
pd.to_pickle(model, f"{MODEL_FOLDER}/{name}.pkl")
def load_model(name):
path = Path(f"{MODEL_FOLDER}/{name}.pkl")
if path.is_file():
model = pd.read_pickle(f"{MODEL_FOLDER}/{name}.pkl")
else:
model = False
return model
def save_model_config(model_config, model_name):
try:
Path(MODEL_CONFIGS_FOLDER).mkdir(exist_ok=True, parents=True)
except Exception as ex:
pass
with open(f"{MODEL_CONFIGS_FOLDER}/{model_name}.json", "w") as fp:
json.dump(model_config, fp)
def load_model_config(model_name):
path_str = f"{MODEL_CONFIGS_FOLDER}/{model_name}.json"
path = Path(path_str)
if path.is_file():
with open(path_str, "r") as fp:
model_config = json.load(fp)
else:
model_config = False
return model_config
def get_biggest_change_features(corrs, n):
all_eras = corrs.index.sort_values()
h1_eras = all_eras[: len(all_eras) // 2]
h2_eras = all_eras[len(all_eras) // 2 :]
h1_corr_means = corrs.loc[h1_eras, :].mean()
h2_corr_means = corrs.loc[h2_eras, :].mean()
corr_diffs = h2_corr_means - h1_corr_means
worst_n = corr_diffs.abs().sort_values(ascending=False).head(n).index.tolist()
return worst_n
def get_time_series_cross_val_splits(data, cv=3, embargo=12):
all_train_eras = data[ERA_COL].unique()
len_split = len(all_train_eras) // cv
test_splits = [
all_train_eras[i * len_split : (i + 1) * len_split] for i in range(cv)
]
# fix the last test split to have all the last eras, in case the number of eras wasn't divisible by cv
remainder = len(all_train_eras) % cv
if remainder != 0:
test_splits[-1] = np.append(test_splits[-1], all_train_eras[-remainder:])
train_splits = []
for test_split in test_splits:
test_split_max = int(np.max(test_split))
test_split_min = int(np.min(test_split))
# get all of the eras that aren't in the test split
train_split_not_embargoed = [
e
for e in all_train_eras
if not (test_split_min <= int(e) <= test_split_max)
]
# embargo the train split so we have no leakage.
# one era is length 5, so we need to embargo by target_length/5 eras.
# To be consistent for all targets, let's embargo everything by 60/5 == 12 eras.
train_split = [
e
for e in train_split_not_embargoed
if abs(int(e) - test_split_max) > embargo
and abs(int(e) - test_split_min) > embargo
]
train_splits.append(train_split)
# convenient way to iterate over train and test splits
train_test_zip = zip(train_splits, test_splits)
return train_test_zip
def neutralize(
df, columns, neutralizers=None, proportion=1.0, normalize=True, era_col="era", verbose=False
):
if neutralizers is None:
neutralizers = []
unique_eras = df[era_col].unique()
computed = []
if verbose:
iterator = tqdm(unique_eras)
else:
iterator = unique_eras
for u in iterator:
df_era = df[df[era_col] == u]
scores = df_era[columns].values
if normalize:
scores2 = []
for x in scores.T:
x = (scipy.stats.rankdata(x, method="ordinal") - 0.5) / len(x)
x = scipy.stats.norm.ppf(x)
scores2.append(x)
scores = np.array(scores2).T
exposures = df_era[neutralizers].values
scores -= proportion * exposures.dot(
np.linalg.pinv(exposures.astype(np.float32), rcond=1e-6).dot(
scores.astype(np.float32)
)
)
scores /= scores.std(ddof=0)
computed.append(scores)
return pd.DataFrame(np.concatenate(computed), columns=columns, index=df.index)
def neutralize_series(series, by, proportion=1.0):
scores = series.values.reshape(-1, 1)
exposures = by.values.reshape(-1, 1)
# this line makes series neutral to a constant column so that it's centered and for sure gets corr 0 with exposures
exposures = np.hstack(
(exposures, np.array([np.mean(series)] * len(exposures)).reshape(-1, 1))
)
correction = proportion * (
exposures.dot(np.linalg.lstsq(exposures, scores, rcond=None)[0])
)
corrected_scores = scores - correction
neutralized = pd.Series(corrected_scores.ravel(), index=series.index)
return neutralized
def unif(df):
x = (df.rank(method="first") - 0.5) / len(df)
return pd.Series(x, index=df.index)
def numerai_corr(preds, target):
# rank (keeping ties) then gaussianize predictions to standardize prediction distributions
ranked_preds = (preds.rank(method="average").values - 0.5) / preds.count()
gauss_ranked_preds = scipy.stats.norm.ppf(ranked_preds)
# center targets around 0
centered_target = target - target.mean()
# raise both preds and target to the power of 1.5 to accentuate the tails
preds_p15 = np.sign(gauss_ranked_preds) * np.abs(gauss_ranked_preds) ** 1.5
target_p15 = np.sign(centered_target) * np.abs(centered_target) ** 1.5
# finally return the Pearson correlation
return np.corrcoef(preds_p15, target_p15)[0, 1]
def get_feature_neutral_mean(
df, prediction_col, target_col, features_for_neutralization=None
):
if features_for_neutralization is None:
features_for_neutralization = [c for c in df.columns if c.startswith("feature")]
df.loc[:, "neutral_sub"] = neutralize(
df, [prediction_col], features_for_neutralization
)[prediction_col]
scores = (
df.groupby("era")
.apply(lambda x: numerai_corr(x["neutral_sub"], x[target_col]))
.mean()
)
return np.mean(scores)
def get_feature_neutral_mean_tb_era(
df, prediction_col, target_col, tb, features_for_neutralization=None
):
if features_for_neutralization is None:
features_for_neutralization = [c for c in df.columns if c.startswith("feature")]
temp_df = df.reset_index(
drop=True
).copy() # Reset index due to use of argsort later
temp_df.loc[:, "neutral_sub"] = neutralize(
temp_df, [prediction_col], features_for_neutralization
)[prediction_col]
temp_df_argsort = temp_df.loc[:, "neutral_sub"].argsort()
temp_df_tb_idx = pd.concat([temp_df_argsort.iloc[:tb], temp_df_argsort.iloc[-tb:]])
temp_df_tb = temp_df.loc[temp_df_tb_idx]
tb_fnc = numerai_corr(temp_df_tb["neutral_sub"], temp_df_tb[target_col])
return tb_fnc
def fast_score_by_date(df, columns, target, tb=None, era_col="era"):
unique_eras = df[era_col].unique()
computed = []
for u in unique_eras:
df_era = df[df[era_col] == u]
era_pred = np.float64(df_era[columns].values.T)
era_target = np.float64(df_era[target].values.T)
if tb is None:
ccs = numerai_corr(era_pred, era_target)
else:
tbidx = np.argsort(era_pred, axis=1)
tbidx = np.concatenate([tbidx[:, :tb], tbidx[:, -tb:]], axis=1)
ccs = [
numerai_corr(pd.Series(era_target[tmpidx]), pd.Series(tmppred[tmpidx]))
for tmpidx, tmppred in zip(tbidx, era_pred)
]
ccs = np.array(ccs)
computed.append(ccs)
return pd.DataFrame(np.array(computed), columns=columns, index=df[era_col].unique())
def exposure_dissimilarity_per_era(df, prediction_col, example_col, feature_cols=None):
if feature_cols is None:
feature_cols = [c for c in df.columns if c.startswith("feature")]
u = df.loc[:, feature_cols].corrwith(df[prediction_col])
e = df.loc[:, feature_cols].corrwith(df[example_col])
return 1 - (np.dot(u, e) / np.dot(e, e))
def validation_metrics(
validation_data,
pred_cols,
example_col,
fast_mode=False,
target_col=TARGET_COL,
features_for_neutralization=None,
):
validation_stats = pd.DataFrame()
feature_cols = [c for c in validation_data if c.startswith("feature_")]
for pred_col in pred_cols:
# Check the per-era correlations on the validation set (out of sample)
validation_correlations = validation_data.groupby(ERA_COL).apply(
lambda d: numerai_corr(d[pred_col], d[target_col])
)
mean = validation_correlations.mean()
std = validation_correlations.std(ddof=0)
sharpe = mean / std
validation_stats.loc["mean", pred_col] = mean
validation_stats.loc["std", pred_col] = std
validation_stats.loc["sharpe", pred_col] = sharpe
rolling_max = (
(validation_correlations + 1)
.cumprod()
.rolling(window=9000, min_periods=1) # arbitrarily large
.max()
)
daily_value = (validation_correlations + 1).cumprod()
max_drawdown = -((rolling_max - daily_value) / rolling_max).max()
validation_stats.loc["max_drawdown", pred_col] = max_drawdown
payout_scores = validation_correlations.clip(-0.25, 0.25)
payout_daily_value = (payout_scores + 1).cumprod()
apy = (
((payout_daily_value.dropna().iloc[-1]) ** (1 / len(payout_scores)))
** 49 # 52 weeks of compounding minus 3 for stake compounding lag
- 1
) * 100
validation_stats.loc["apy", pred_col] = apy
if not fast_mode:
# Check the feature exposure of your validation predictions
max_per_era = validation_data.groupby(ERA_COL).apply(
lambda d: d[feature_cols].corrwith(d[pred_col]).abs().max()
)
max_feature_exposure = max_per_era.mean()
validation_stats.loc[
"max_feature_exposure", pred_col
] = max_feature_exposure
# Check feature neutral mean
feature_neutral_mean = get_feature_neutral_mean(
validation_data, pred_col, target_col, features_for_neutralization
)
validation_stats.loc[
"feature_neutral_mean", pred_col
] = feature_neutral_mean
# Check TB200 feature neutral mean
tb200_feature_neutral_mean_era = validation_data.groupby(ERA_COL).apply(
lambda df: get_feature_neutral_mean_tb_era(
df, pred_col, target_col, 200, features_for_neutralization
)
)
validation_stats.loc[
"tb200_feature_neutral_mean", pred_col
] = tb200_feature_neutral_mean_era.mean()
# Check top and bottom 200 metrics (TB200)
tb200_validation_correlations = fast_score_by_date(
validation_data, [pred_col], target_col, tb=200, era_col=ERA_COL
)
tb200_mean = tb200_validation_correlations.mean()[pred_col]
tb200_std = tb200_validation_correlations.std(ddof=0)[pred_col]
tb200_sharpe = tb200_mean / tb200_std
validation_stats.loc["tb200_mean", pred_col] = tb200_mean
validation_stats.loc["tb200_std", pred_col] = tb200_std
validation_stats.loc["tb200_sharpe", pred_col] = tb200_sharpe
# MMC over validation
mmc_scores = []
corr_scores = []
for _, x in validation_data.groupby(ERA_COL):
series = neutralize_series(unif(x[pred_col]), (x[example_col]))
mmc_scores.append(np.cov(series, x[target_col])[0, 1] / (0.29**2))
corr_scores.append(unif(x[pred_col]).corr(x[target_col]))
val_mmc_mean = np.mean(mmc_scores)
val_mmc_std = np.std(mmc_scores)
corr_plus_mmcs = [c + m for c, m in zip(corr_scores, mmc_scores)]
corr_plus_mmc_sharpe = np.mean(corr_plus_mmcs) / np.std(corr_plus_mmcs)
validation_stats.loc["mmc_mean", pred_col] = val_mmc_mean
validation_stats.loc["corr_plus_mmc_sharpe", pred_col] = corr_plus_mmc_sharpe
# Check correlation with example predictions
per_era_corrs = validation_data.groupby(ERA_COL).apply(
lambda d: unif(d[pred_col]).corr(unif(d[example_col]))
)
corr_with_example_preds = per_era_corrs.mean()
validation_stats.loc[
"corr_with_example_preds", pred_col
] = corr_with_example_preds
# Check exposure dissimilarity per era
tdf = validation_data.groupby(ERA_COL).apply(
lambda df: exposure_dissimilarity_per_era(
df, pred_col, example_col, feature_cols
)
)
validation_stats.loc["exposure_dissimilarity_mean", pred_col] = tdf.mean()
# .transpose so that stats are columns and the model_name is the row
return validation_stats.transpose()