forked from liugangcode/GREA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
98 lines (78 loc) · 4.11 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import torch
import torch.nn.functional as F
from torch_scatter import scatter_add
from torch_geometric.nn.inits import reset
from conv import GNN_node, GNN_node_Virtualnode
nn_act = torch.nn.ReLU()
F_act = F.relu
class GraphEnvAug(torch.nn.Module):
def __init__(self, num_tasks, num_layer = 5, emb_dim = 300, gnn_type = 'gin', drop_ratio = 0.5, gamma = 0.4, use_linear_predictor=False):
'''
num_tasks (int): number of labels to be predicted
'''
super(GraphEnvAug, self).__init__()
self.num_layer = num_layer
self.drop_ratio = drop_ratio
self.emb_dim = emb_dim
self.num_tasks = num_tasks
self.gamma = gamma
if self.num_layer < 2:
raise ValueError("Number of GNN layers must be greater than 1.")
### GNN to generate node embeddings
gnn_name = gnn_type.split('-')[0]
emb_dim_rat = emb_dim
if 'virtual' in gnn_type:
rationale_gnn_node = GNN_node_Virtualnode(2, emb_dim_rat, JK = "last", drop_ratio = drop_ratio, residual = True, gnn_name = gnn_name)
self.graph_encoder = GNN_node_Virtualnode(num_layer, emb_dim, JK = "last", drop_ratio = drop_ratio, residual = True, gnn_name = gnn_name)
else:
rationale_gnn_node = GNN_node(2, emb_dim_rat, JK = "last", drop_ratio = drop_ratio, residual = True, gnn_name = gnn_name)
self.graph_encoder = GNN_node(num_layer, emb_dim, JK = "last", drop_ratio = drop_ratio, residual = True, gnn_name = gnn_name)
self.separator = separator(
rationale_gnn_node=rationale_gnn_node,
gate_nn = torch.nn.Sequential(torch.nn.Linear(emb_dim_rat, 2*emb_dim_rat), torch.nn.BatchNorm1d(2*emb_dim_rat), nn_act, torch.nn.Dropout(), torch.nn.Linear(2*emb_dim_rat, 1)),
nn=None
)
rep_dim = emb_dim
if use_linear_predictor:
self.predictor = torch.nn.Linear(rep_dim, self.num_tasks)
else:
self.predictor = torch.nn.Sequential(torch.nn.Linear(rep_dim, 2*emb_dim), torch.nn.BatchNorm1d(2*emb_dim), nn_act, torch.nn.Dropout(), torch.nn.Linear(2*emb_dim, self.num_tasks))
def forward(self, batched_data):
h_node = self.graph_encoder(batched_data)
h_r, h_env, r_node_num, env_node_num = self.separator(batched_data, h_node)
h_rep = (h_r.unsqueeze(1) + h_env.unsqueeze(0)).view(-1, self.emb_dim)
pred_rem = self.predictor(h_r)
pred_rep = self.predictor(h_rep)
loss_reg = torch.abs(r_node_num / (r_node_num + env_node_num) - self.gamma * torch.ones_like(r_node_num)).mean()
output = {'pred_rep': pred_rep, 'pred_rem': pred_rem, 'loss_reg':loss_reg}
return output
def eval_forward(self, batched_data):
h_node = self.graph_encoder(batched_data)
h_r, _, _, _ = self.separator(batched_data, h_node)
pred_rem = self.predictor(h_r)
return pred_rem
class separator(torch.nn.Module):
def __init__(self, rationale_gnn_node, gate_nn, nn=None):
super(separator, self).__init__()
self.rationale_gnn_node = rationale_gnn_node
self.gate_nn = gate_nn
self.nn = nn
self.reset_parameters()
def reset_parameters(self):
reset(self.rationale_gnn_node)
reset(self.gate_nn)
reset(self.nn)
def forward(self, batched_data, h_node, size=None):
x = self.rationale_gnn_node(batched_data)
batch = batched_data.batch
x = x.unsqueeze(-1) if x.dim() == 1 else x
size = batch[-1].item() + 1 if size is None else size
gate = self.gate_nn(x).view(-1, 1)
h_node = self.nn(h_node) if self.nn is not None else h_node
assert gate.dim() == h_node.dim() and gate.size(0) == h_node.size(0)
gate = torch.sigmoid(gate)
h_out = scatter_add(gate * h_node, batch, dim=0, dim_size=size)
c_out = scatter_add((1 - gate) * h_node, batch, dim=0, dim_size=size)
r_node_num = scatter_add(gate, batch, dim=0, dim_size=size)
env_node_num = scatter_add((1 - gate), batch, dim=0, dim_size=size)
return h_out, c_out, r_node_num + 1e-8 , env_node_num + 1e-8