forked from twjiang/MIMO_CFE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMIMO.py
693 lines (521 loc) · 27.9 KB
/
MIMO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
from pytorch_pretrained_bert.modeling import *
class LSTM_encoder(nn.Module):
"""docstring for LSTM_encoder"""
def __init__(self, wordEmbedding, word2ID, pos2ID, cap2ID, word_dim, input_size, hidden_size, num_layers, bidirectional, lm_config, postag_config, cap_config, device):
super(LSTM_encoder, self).__init__()
self.device = device
self.bidirectional = bidirectional
self.lm_config = lm_config
self.postag_config = postag_config
self.cap_config = cap_config
self.WordEmbedding = nn.Embedding(len(word2ID), word_dim)
self.POSEmbedding = nn.Embedding(len(pos2ID), int(math.ceil(math.log(len(pos2ID),2))))
self.CAPEmbedding = nn.Embedding(len(cap2ID), int(math.ceil(math.log(len(cap2ID),2))))
self.w_lm = nn.Parameter(torch.randn(200, word_dim))
self.w_pos = nn.Parameter(torch.randn(int(math.ceil(math.log(len(pos2ID),2))), word_dim))
self.w_cap = nn.Parameter(torch.randn(int(math.ceil(math.log(len(cap2ID),2))), word_dim))
self.WordEmbedding.weight = nn.Parameter(wordEmbedding, requires_grad=False)
self.Word2ID = word2ID
self.POS2ID = pos2ID
self.CAP2ID = cap2ID
self.input_size = input_size
# self.batch_size = batch_size
self.hidden_size = hidden_size
self.lstm = nn.LSTM(self.input_size, self.hidden_size, num_layers, batch_first=True, bidirectional=self.bidirectional)
self.hidden = None
#for weight in self.parameters():
#print type(weight), weight.size(), weight.requires_grad
def forward(self, tuple_batch):
sentences_batch, pos_batch, cap_batch, lm_batch = tuple_batch
length = []
wordsIndex_batch = []
posesIndex_batch = []
capsIndex_batch = []
lm_batch_new = []
length_max = len(sentences_batch[0])
for index in range(len(sentences_batch)):
sentence = sentences_batch[index]
poses = pos_batch[index]
caps = cap_batch[index]
assert len(sentence) == len(poses) == len(caps)
length.append(len(sentence))
wordsIndex = []
posesIndex = []
capsIndex = []
for word in sentence:
if word in self.Word2ID:
wordsIndex.append(self.Word2ID[word])
else:
wordsIndex.append(self.Word2ID['<unk>'])
wordsIndex += [0]*(length_max-len(wordsIndex))
wordsIndex_batch.append(wordsIndex)
for pos in poses:
if pos not in self.POS2ID:
posesIndex.append(self.POS2ID['SYM'])
else:
posesIndex.append(self.POS2ID[pos])
posesIndex += [0]*(length_max-len(posesIndex))
posesIndex_batch.append(posesIndex)
for cap in caps:
capsIndex.append(self.CAP2ID[cap])
capsIndex += [0]*(length_max-len(capsIndex))
capsIndex_batch.append(capsIndex)
wordsIndex_batch = autograd.Variable(torch.LongTensor(wordsIndex_batch)).to(self.device)
posesIndex_batch = autograd.Variable(torch.LongTensor(posesIndex_batch)).to(self.device)
capsIndex_batch = autograd.Variable(torch.LongTensor(capsIndex_batch)).to(self.device)
lmsEmb = autograd.Variable(lm_batch)
sentencesEmb = self.WordEmbedding(wordsIndex_batch)
posesEmb = self.POSEmbedding(posesIndex_batch)
capsEmb = self.CAPEmbedding(capsIndex_batch)
emb = sentencesEmb + 0
if self.lm_config[0]:
emb += torch.matmul(lmsEmb, self.w_lm)
if self.postag_config[0]:
emb += torch.matmul(posesEmb, self.w_pos)
if self.cap_config[0]:
emb += torch.matmul(capsEmb, self.w_cap)
emb = emb.to(self.device)
packed_sentencesEmb = pack_padded_sequence(emb, length, batch_first=True)
packed_output, (ht, ct) = self.lstm(packed_sentencesEmb, self.hidden)
output, _ = pad_packed_sequence(packed_output, batch_first=True)
return output.transpose(0,1).transpose(1,2), posesEmb.transpose(0,1).transpose(1,2), capsEmb.transpose(0,1).transpose(1,2), lmsEmb.transpose(0,1).transpose(1,2)
def init_hidden(self, batch_size):
# Before we've done anything, we dont have any hidden state.
# Refer to the Pytorch documentation to see exactly
# why they have this dimensionality.
# The axes semantics are (num_layers, minibatch_size, hidden_size)
return (autograd.Variable(torch.zeros(2, batch_size, self.hidden_size)).to(self.device),
autograd.Variable(torch.zeros(2, batch_size, self.hidden_size)).to(self.device))
class LSTM_decoder(nn.Module):
"""docstring for LSTM_decoder"""
def __init__(self, input_size, hidden_size, tagset_size, pos2ID, cap2ID, lm_config, postag_config, cap_config, device):
super(LSTM_decoder, self).__init__()
self.device = device
self.tagset_size = tagset_size
self.hidden_size = hidden_size
#self.hidden = self.init_hidden()
self.lm_config = lm_config
self.postag_config = postag_config
self.cap_config = cap_config
self.w_ii = nn.Parameter(torch.randn(4 * hidden_size, input_size))
self.w_hi = nn.Parameter(torch.randn(4 * hidden_size, hidden_size))
self.w_ti = nn.Parameter(torch.randn(3 * hidden_size, hidden_size))
self.w_co = nn.Parameter(torch.randn(hidden_size, hidden_size))
self.w_ht = nn.Parameter(torch.randn(hidden_size, hidden_size))
self.b_i = nn.Parameter(torch.randn(5 * hidden_size))
self.w_y_fact = nn.Parameter(torch.randn(tagset_size, hidden_size))
self.b_y_fact = nn.Parameter(torch.randn(tagset_size))
self.w_fact = nn.Parameter(torch.randn(tagset_size, tagset_size))
self.w_y_cond = nn.Parameter(torch.randn(tagset_size, hidden_size))
self.b_y_cond = nn.Parameter(torch.randn(tagset_size))
self.w_lmw = nn.Parameter(torch.randn(200, input_size))
self.w_posw = nn.Parameter(torch.randn(int(math.ceil(math.log(len(pos2ID),2))), input_size))
self.w_capw = nn.Parameter(torch.randn(int(math.ceil(math.log(len(cap2ID),2))), input_size))
self.w_lmt = nn.Parameter(torch.randn(hidden_size, 200))
self.w_post = nn.Parameter(torch.randn(hidden_size, int(math.ceil(math.log(len(pos2ID),2)))))
self.w_capt = nn.Parameter(torch.randn(hidden_size, int(math.ceil(math.log(len(cap2ID),2)))))
self.reset_parameters()
self.hidden = None
#for weight in self.parameters():
#print type(weight), weight.size(), weight.requires_grad
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.hidden_size)
for weight in self.parameters():
# print type(weight), weight.size()
weight.data.uniform_(-stdv, stdv)
def forward(self, inputs, lmsEmb, posesEmb, capsEmb):
border = self.hidden_size
hs = [self.hidden[0][0].transpose(0, 1)]
cs = [self.hidden[1][0].transpose(0, 1)]
ts = [self.hidden[2][0].transpose(0, 1)]
new_inputs = inputs + 0
if self.lm_config[1]:
new_inputs += torch.matmul(lmsEmb.transpose(1, 2), self.w_lmw).transpose(1, 2)
if self.postag_config[1]:
new_inputs += torch.matmul(posesEmb.transpose(1, 2), self.w_posw).transpose(1, 2)
if self.cap_config[1]:
new_inputs += torch.matmul(capsEmb.transpose(1, 2), self.w_capw).transpose(1, 2)
hidden_out = []
outputs_fact = []
outputs_distrib_fact = []
outputs_condition = []
outputs_distrib_condition = []
for index in range(len(new_inputs)):
_input = new_inputs[index]
posEmb = posesEmb[index]
capEmb = capsEmb[index]
lmEmb = lmsEmb[index]
ii = torch.mm(self.w_ii, _input)
hi = torch.mm(self.w_hi, hs[-1])
ti = torch.mm(self.w_ti, ts[-1])
i = torch.sigmoid(ii[:border] + hi[:border] + ti[:border] + self.b_i[:border].view(-1,1))
f = torch.sigmoid(ii[border:2*border] + hi[border:2*border] + ti[border:2*border] + self.b_i[border:2*border].view(-1,1))
z = torch.tanh(ii[2*border:3*border] + hi[2*border:3*border] + ti[2*border:3*border] + self.b_i[2*border:3*border].view(-1,1))
c = f * cs[-1] + i * z
o = torch.sigmoid(ii[3*border:4*border] + hi[3*border:4*border] + torch.mm(self.w_co, c) + self.b_i[3*border:4*border].view(-1,1))
h = o * torch.tanh(c)
_T = torch.mm(self.w_ht, h) + self.b_i[4*border:].view(-1,1)
T = _T + 0
if self.lm_config[-1]:
T += torch.mm(self.w_lmt, lmEmb)
if self.postag_config[-1]:
T += torch.mm(self.w_post, posEmb)
if self.cap_config[-1]:
T += torch.mm(self.w_capt, capEmb)
hs.append(h)
cs.append(c)
ts.append(T)
y_fact = torch.mm(self.w_y_fact, T) + self.b_y_fact.view(-1,1)
outputs_fact.append(F.log_softmax(y_fact, 0).view(1, self.tagset_size, -1))
outputs_distrib_fact.append(y_fact.view(1, self.tagset_size, -1))
y_condition = torch.mm(self.w_y_cond, T) + self.b_y_cond.view(-1,1)
outputs_condition.append(F.log_softmax(y_condition, 0).view(1, self.tagset_size, -1))
outputs_distrib_condition.append(y_condition.view(1, self.tagset_size, -1))
hidden_out.append(T.view(1, self.hidden_size, -1))
outputs_fact = torch.cat(outputs_fact).transpose(0,2).transpose(1,2)
outputs_distrib_fact = torch.cat(outputs_distrib_fact).transpose(0,2).transpose(1,2)
outputs_condition = torch.cat(outputs_condition).transpose(0,2).transpose(1,2)
outputs_distrib_condition = torch.cat(outputs_distrib_condition).transpose(0,2).transpose(1,2)
hidden_out = torch.cat(hidden_out).transpose(0,2).transpose(1,2)
# print outputs.size(), type(outputs)
return outputs_fact, outputs_condition, outputs_distrib_fact, outputs_distrib_condition, hidden_out
def init_hidden(self, batch_size):
# Before we've done anything, we dont have any hidden state.
# Refer to the Pytorch documentation to see exactly
# why they have this dimensionality.
# The axes semantics are (num_layers, minibatch_size, hidden_size)
return (autograd.Variable(torch.zeros(1, batch_size, self.hidden_size)).to(self.device),
autograd.Variable(torch.zeros(1, batch_size, self.hidden_size)).to(self.device),
autograd.Variable(torch.zeros(1, batch_size, self.hidden_size)).to(self.device))
class TAG_TF(nn.Module):
"""docstring for TAG_TF"""
def __init__(self, dim, num_attention_heads=3):
super(TAG_TF, self).__init__()
self.position_embeddings = nn.Embedding(512, dim)
self.LayerNorm = BertLayerNorm(dim, eps=1e-12)
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=dim, num_attention_heads=num_attention_heads)
self.fact_attention = BertAttention(config)
self.cond_attention = BertAttention(config)
self.fact_inter_attention = BertInterAttention(config)
self.cond_inter_attention = BertInterAttention(config)
# print(config.num_attention_heads)
def forward(self, inputs, attention_mask):
"""
inputs: [size_b, seq_len, dim]
attention_mask: [size_b, seq_len]
"""
seq_length = inputs.size(1)
position_ids = torch.arange(seq_length, dtype=torch.long, device=inputs.device)
# [size_b, seq_len]
position_ids = position_ids.unsqueeze(0).expand(inputs.size()[:2])
position_embeddings = self.position_embeddings(position_ids)
embeddings = inputs + position_embeddings
embeddings = self.LayerNorm(embeddings)
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype)
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
fact_self_attention_output = self.fact_attention(embeddings, extended_attention_mask)
cond_self_attention_output = self.cond_attention(embeddings, extended_attention_mask)
fact_attention_output = self.fact_inter_attention(fact_self_attention_output, cond_self_attention_output, cond_self_attention_output, extended_attention_mask)
cond_attention_output = self.cond_inter_attention(cond_self_attention_output, fact_self_attention_output, fact_self_attention_output, extended_attention_mask)
return fact_attention_output, cond_attention_output
class BertInterAttention(nn.Module):
def __init__(self, config):
super(BertInterAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.output = BertSelfOutput(config)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, q, k, v, attention_mask):
mixed_query_layer = self.query(q)
mixed_key_layer = self.key(k)
mixed_value_layer = self.value(v)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
attention_output = self.output(context_layer, q)
return attention_output
class BERT_Encoder(nn.Module):
"""docstring for BERT_Encoder"""
def __init__(self, num_labels=11, hidden_dropout_prob=0.1):
super(BERT_Encoder, self).__init__()
self.num_labels = num_labels
self.bert = BertModel.from_pretrained('bert-base-uncased')
self.dropout = nn.Dropout(hidden_dropout_prob)
def init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
elif isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
sequence_output = self.dropout(sequence_output)
return sequence_output
class Extractor(nn.Module):
"""docstring for Extractor"""
def __init__(self, hidden_dim, tagset_size, name=''):
super(Extractor, self).__init__()
self.tuple_layer = nn.Linear(hidden_dim, tagset_size)
self.position_embeddings = nn.Embedding(300, hidden_dim)
self.name = '_extractor_'+name
def forward(self, inputs, position_ids):
"""
inputs: [size_b, seq_len, dim]
position_ids: [size_b, seq_len]
"""
# print(inputs.size(), position_ids.size())
position_embeddings = self.position_embeddings(position_ids)
embeddings = inputs + position_embeddings
logits = F.log_softmax(self.tuple_layer(embeddings), 2)
return logits
class Multi_head_Net(nn.Module):
"""docstring for Multi_head_Net"""
def __init__(self, hidden_dim, tagset_size):
super(Multi_head_Net, self).__init__()
self.name = '_multi_head'
self.w_lm = nn.Parameter(torch.randn(hidden_dim))
self.w_pos = nn.Parameter(torch.randn(hidden_dim), requires_grad=False)
self.w_cap = nn.Parameter(torch.randn(hidden_dim), requires_grad=False)
# self.w = nn.Parameter(torch.randn(hidden_dim))
self.b = nn.Parameter(torch.randn(hidden_dim))
self.tagset_size = tagset_size
self.fact_layer = nn.Linear(hidden_dim, tagset_size)
self.cond_layer = nn.Linear(hidden_dim, tagset_size)
def forward(self, tuple_batch):
lm_input_batch, pos_input_batch, cap_input_batch = tuple_batch
hidden_out_batch = 0
if isinstance(lm_input_batch, torch.Tensor):
hidden_out_batch += lm_input_batch*self.w_lm
# hidden_out_batch.append(lm_input_batch)
if isinstance(pos_input_batch, torch.Tensor):
hidden_out_batch += pos_input_batch*self.w_pos
# hidden_out_batch.append(pos_input_batch)
if isinstance(cap_input_batch, torch.Tensor):
hidden_out_batch += cap_input_batch*self.w_cap
# hidden_out_batch.append(cap_input_batch)
hidden_out_batch += self.b
# hidden_out_batch = torch.cat(hidden_out_batch, 2)
predict_fact_batch = F.log_softmax(self.fact_layer(hidden_out_batch), 2)
predict_condition_batch = F.log_softmax(self.cond_layer(hidden_out_batch), 2)
return predict_fact_batch, predict_condition_batch, hidden_out_batch
class Multi_head_Two_Net(nn.Module):
"""docstring for Multi_head_Two_Net"""
def __init__(self, hidden_dim, tagset_size):
super(Multi_head_Two_Net, self).__init__()
self.name = '_multi_head_all'
self.w1 = nn.Parameter(torch.randn(hidden_dim))
self.w2 = nn.Parameter(torch.randn(hidden_dim))
self.b = nn.Parameter(torch.randn(hidden_dim))
self.tagset_size = tagset_size
self.fact_layer = nn.Linear(hidden_dim, tagset_size)
self.cond_layer = nn.Linear(hidden_dim, tagset_size)
def forward(self, tuple_batch):
first_input_batch, second_input_batch = tuple_batch
hidden_out_batch = first_input_batch*self.w1 + second_input_batch*self.w2 + self.b
# hidden_out_batch = torch.cat(hidden_out_batch, 2)
predict_fact_batch = F.log_softmax(self.fact_layer(hidden_out_batch), 2)
predict_condition_batch = F.log_softmax(self.cond_layer(hidden_out_batch), 2)
return predict_fact_batch, predict_condition_batch, hidden_out_batch
class MIMO_LSTM(nn.Module):
"""docstring for Tagger"""
def __init__(self, wordEmbedding, word2ID, pos2ID, cap2ID, embedding_dim, input_dim, hidden_dim, tagset_size_fact, tagset_size_condition, lm_config, postag_config, cap_config, device):
super(MIMO_LSTM, self).__init__()
self.name = ''
self.hidden_dim = hidden_dim
self.model_LSTM_encoder = LSTM_encoder(wordEmbedding, word2ID, pos2ID, cap2ID, embedding_dim, input_dim, hidden_dim, num_layers = 1, bidirectional=True, lm_config=lm_config, postag_config=postag_config, cap_config=cap_config, device=device)
self.model_LSTM_decoder = LSTM_decoder(hidden_dim * 2, hidden_dim * 2, tagset_size_fact, pos2ID, cap2ID, lm_config, postag_config, cap_config, device)
def forward(self, tuple_batch, batch_size, attention_mask=None):
self.model_LSTM_encoder.hidden = self.model_LSTM_encoder.init_hidden(batch_size)
encoder, posesEmb, capsEmb, lmsEmb = self.model_LSTM_encoder(tuple_batch)
self.model_LSTM_decoder.hidden = self.model_LSTM_decoder.init_hidden(batch_size)
fact_batch, condition_batch, outputs_distrib_fact, outputs_distrib_condition, hidden_out = self.model_LSTM_decoder(encoder, lmsEmb, posesEmb, capsEmb)
return fact_batch, condition_batch, outputs_distrib_fact, outputs_distrib_condition, hidden_out
class MIMO_BERT(nn.Module):
"""docstring for MIMO"""
def __init__(self, pretrained_model_name, num_labels=11, hidden_dropout_prob=0.1):
super(MIMO_BERT, self).__init__()
self.bert = BERT_Encoder(num_labels, hidden_dropout_prob)
self.hidden_size = 768 if pretrained_model_name.startswith('bert-base') else 1024
self.classifier_fact = nn.Linear(self.hidden_size, num_labels)
self.classifier_cond = nn.Linear(self.hidden_size, num_labels)
self.apply(self.init_weights)
def init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
elif isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
sequence_output = bert(input_ids, token_type_ids, attention_mask, labels)
# [batch_size, sequence_length, num_labels]
logits_fact = F.log_softmax(self.classifier_fact(sequence_output), 2)
logits_cond = F.log_softmax(self.classifier_cond(sequence_output), 2)
return logits_fact, logits_cond, None, None, sequence_output
class MIMO_LSTM_TF(nn.Module):
"""docstring for MIMO_LSTM_TF"""
def __init__(self, wordEmbedding, word2ID, pos2ID, cap2ID, embedding_dim, input_dim, hidden_dim, tagset_size_fact, tagset_size_condition, lm_config, postag_config, cap_config, device):
super(MIMO_LSTM_TF, self).__init__()
self.hidden_dim = hidden_dim
self.model_LSTM_encoder = LSTM_encoder(wordEmbedding, word2ID, pos2ID, cap2ID, embedding_dim, input_dim, hidden_dim, num_layers = 1, bidirectional=True, lm_config=lm_config, postag_config=postag_config, cap_config=cap_config, device=device)
self.model_LSTM_decoder = LSTM_decoder(hidden_dim * 2, hidden_dim * 2, tagset_size_fact, pos2ID, cap2ID, lm_config, postag_config, cap_config, device)
self.tag_tf = TAG_TF(hidden_dim * 2)
self.fact_layer = nn.Linear(hidden_dim * 2, tagset_size_fact)
self.cond_layer = nn.Linear(hidden_dim * 2, tagset_size_condition)
def forward(self, tuple_batch, batch_size, attention_mask):
self.model_LSTM_encoder.hidden = self.model_LSTM_encoder.init_hidden(batch_size)
encoder, posesEmb, capsEmb, lmsEmb = self.model_LSTM_encoder(tuple_batch)
self.model_LSTM_decoder.hidden = self.model_LSTM_decoder.init_hidden(batch_size)
_, _, _, _, hidden_out = self.model_LSTM_decoder(encoder, lmsEmb, posesEmb, capsEmb)
fact_att_out, cond_att_out = self.tag_tf(hidden_out, attention_mask)
y_fact = self.fact_layer(fact_att_out)
y_cond = self.cond_layer(cond_att_out)
outputs_fact = F.log_softmax(y_fact, 2)
outputs_condition = F.log_softmax(y_cond, 2)
return outputs_fact, outputs_condition
class MIMO_BERT_LSTM(nn.Module):
"""docstring for MIMO_BERT_LSTM"""
def __init__(self, pos2ID, cap2ID, hidden_dim, tagset_size_fact, tagset_size_condition, lm_config, postag_config, cap_config, device):
super(MIMO_BERT_LSTM, self).__init__()
self.name = ''
self.POS2ID = pos2ID
self.CAP2ID = cap2ID
self.hidden_dim = hidden_dim
self.POSEmbedding = nn.Embedding(len(pos2ID), int(math.ceil(math.log(len(pos2ID),2))))
self.CAPEmbedding = nn.Embedding(len(cap2ID), int(math.ceil(math.log(len(cap2ID),2))))
self.device = device
self.model_BERT_encoder = BERT_Encoder(tagset_size_fact)
self.model_LSTM_decoder = LSTM_decoder(hidden_dim, hidden_dim, tagset_size_fact, pos2ID, cap2ID, lm_config, postag_config, cap_config, device)
def get_embs(self, tuple_batch):
pos_batch, cap_batch, lm_batch = tuple_batch
posesIndex_batch = []
capsIndex_batch = []
length_max = len(pos_batch[0])
for index in range(len(pos_batch)):
poses = pos_batch[index]
caps = cap_batch[index]
assert len(poses) == len(caps)
posesIndex = []
capsIndex = []
for pos in poses:
if pos not in self.POS2ID:
posesIndex.append(self.POS2ID['SYM'])
else:
posesIndex.append(self.POS2ID[pos])
posesIndex += [0]*(length_max-len(posesIndex))
posesIndex_batch.append(posesIndex)
for cap in caps:
capsIndex.append(self.CAP2ID[cap])
capsIndex += [0]*(length_max-len(capsIndex))
capsIndex_batch.append(capsIndex)
posesIndex_batch = autograd.Variable(torch.LongTensor(posesIndex_batch)).to(self.device)
capsIndex_batch = autograd.Variable(torch.LongTensor(capsIndex_batch)).to(self.device)
lmsEmb = autograd.Variable(lm_batch)
posesEmb = self.POSEmbedding(posesIndex_batch)
capsEmb = self.CAPEmbedding(capsIndex_batch)
return lmsEmb.transpose(0,1).transpose(1,2), posesEmb.transpose(0,1).transpose(1,2), capsEmb.transpose(0,1).transpose(1,2),
def forward(self, tuple_batch, batch_size, input_ids, token_type_ids=None, attention_mask=None):
encoder = self.model_BERT_encoder(input_ids, token_type_ids, attention_mask)
encoder = encoder.transpose(0,1).transpose(1,2)
lmsEmb, posesEmb, capsEmb = self.get_embs(tuple_batch)
self.model_LSTM_decoder.hidden = self.model_LSTM_decoder.init_hidden(batch_size)
fact_batch, condition_batch, outputs_distrib_fact, outputs_distrib_condition, hidden_out = self.model_LSTM_decoder(encoder, lmsEmb, posesEmb, capsEmb)
return fact_batch, condition_batch, outputs_distrib_fact, outputs_distrib_condition, hidden_out
class MIMO_BERT_LSTM_TF(nn.Module):
"""docstring for MIMO_BERT_LSTM"""
def __init__(self, pos2ID, cap2ID, hidden_dim, tagset_size_fact, tagset_size_condition, lm_config, postag_config, cap_config, device):
super(MIMO_BERT_LSTM_TF, self).__init__()
self.POS2ID = pos2ID
self.CAP2ID = cap2ID
self.hidden_dim = hidden_dim
self.POSEmbedding = nn.Embedding(len(pos2ID), int(math.ceil(math.log(len(pos2ID),2))))
self.CAPEmbedding = nn.Embedding(len(cap2ID), int(math.ceil(math.log(len(cap2ID),2))))
self.device = device
self.model_BERT_encoder = BERT_Encoder(tagset_size_fact)
self.model_LSTM_decoder = LSTM_decoder(hidden_dim, hidden_dim, tagset_size_fact, pos2ID, cap2ID, lm_config, postag_config, cap_config, device)
self.tag_tf = TAG_TF(hidden_dim)
self.fact_layer = nn.Linear(hidden_dim, tagset_size_fact)
self.cond_layer = nn.Linear(hidden_dim, tagset_size_condition)
def get_embs(self, tuple_batch):
pos_batch, cap_batch, lm_batch = tuple_batch
posesIndex_batch = []
capsIndex_batch = []
lm_batch_new = []
length_max = len(pos_batch[0])
for index in range(len(pos_batch)):
poses = pos_batch[index]
caps = cap_batch[index]
lms = lm_batch[index]
assert len(poses) == len(caps) == len(lms)
posesIndex = []
capsIndex = []
for pos in poses:
if pos not in self.POS2ID:
posesIndex.append(self.POS2ID['SYM'])
else:
posesIndex.append(self.POS2ID[pos])
posesIndex += [0]*(length_max-len(posesIndex))
posesIndex_batch.append(posesIndex)
for cap in caps:
capsIndex.append(self.CAP2ID[cap])
capsIndex += [0]*(length_max-len(capsIndex))
capsIndex_batch.append(capsIndex)
# print lms.size(), length_max
lms_pad = torch.randn((length_max-len(lms), len(lms[0])), dtype=torch.float32)
lms = torch.cat([lms.to(self.device), lms_pad.to(self.device)])
lm_batch_new.append(lms.view(1, lms.size(0), lms.size(1)))
posesIndex_batch = autograd.Variable(torch.LongTensor(posesIndex_batch)).to(self.device)
capsIndex_batch = autograd.Variable(torch.LongTensor(capsIndex_batch)).to(self.device)
lm_batch_new = torch.cat(lm_batch_new, 0)
lmsEmb = autograd.Variable(lm_batch_new).to(self.device)
posesEmb = self.POSEmbedding(posesIndex_batch)
capsEmb = self.CAPEmbedding(capsIndex_batch)
return lmsEmb.transpose(0,1).transpose(1,2), posesEmb.transpose(0,1).transpose(1,2), capsEmb.transpose(0,1).transpose(1,2),
def forward(self, tuple_batch, batch_size, input_ids, token_type_ids=None, attention_mask=None):
encoder = self.model_BERT_encoder(input_ids, token_type_ids, attention_mask)
encoder = encoder.transpose(0,1).transpose(1,2)
lmsEmb, posesEmb, capsEmb = self.get_embs(tuple_batch)
self.model_LSTM_decoder.hidden = self.model_LSTM_decoder.init_hidden(batch_size)
fact_batch, condition_batch, outputs_distrib_fact, outputs_distrib_condition, hidden_out = self.model_LSTM_decoder(encoder, lmsEmb, posesEmb, capsEmb)
fact_att_out, cond_att_out = self.tag_tf(hidden_out, attention_mask)
y_fact = self.fact_layer(fact_att_out)
y_cond = self.cond_layer(cond_att_out)
outputs_fact = F.log_softmax(y_fact, 2)
outputs_condition = F.log_softmax(y_cond, 2)
return fact_batch, condition_batch
#