-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathencoding_layer_ori.py
228 lines (185 loc) · 7.27 KB
/
encoding_layer_ori.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from __future__ import division
from keras.engine.topology import Layer, InputSpec
import keras.backend as K
import os, sys, struct, math
from PIL import Image as pil_image
import numpy as np
from scipy.io.wavfile import write as wav_write
import tensorflow as tf
import copy
FL = 80 # Lowest frequency (Hz) in soundscape
FH = 7600 # Highest frequency (Hz)
FS = 22050 # Sample frequency (Hz)
T = 1.05 #1.05 # Image to sound conversion time (s)
D = 1 # Linear|Exponential|tanh=0|1|2 distribution
HIFI = 1 # 8-bit|16-bit=0|1 sound quality
STEREO = 0 # Mono|Stereo=0|1 sound selection
DELAY = 1 # Nodelay|Delay=0|1 model (STEREO=1)
FADE = 1 # Relative fade No|Yes=0|1 (STEREO=1)
DIFFR = 1 # Diffraction No|Yes=0|1 (STEREO=1)
BSPL = 1 # Rectangular|B-spline=0|1 time window
BW = 0 # 16|2-level=0|1 gray format in P[][]
CAM = 1 # Use OpenCV camera input No|Yes=0|1
VIEW = 1 # Screen view for debugging No|Yes=0|1
CONTRAST = 2 # Contrast enhancement, 0=none
PITCH = 0 # the position of high pitch: top|middle|bottom = 0|1|2
# Coefficients used in rnd()
ir = 0
ia = 9301
ic = 49297
im = 233280
TwoPi = 6.283185307179586476925287
HIST = (1 + HIFI) * (1 + STEREO)
WHITE = 1.00
BLACK = 0.00
N = 64
M = 64
# k = 0
b = 0
d = D
ns = 2 * int(0.5 * FS * T)
m = int(ns / N)
sso = 0.0 if HIFI else 128
ssm = 32768.0 if HIFI else 128
scale = 0.5 / math.sqrt(M)
dt = 1.0 / FS
v = 340.0 # v = speed of sound (m/s)
hs = 0.20 # hs = characteristic acoustical size of head (m)
def wi(fp, i):
b0 = int(i % 256)
b1 = int((i - b0) / 256)
fp.write(struct.pack('B', b0 & 0xff))
fp.write(struct.pack('B', b1 & 0xff))
def wl(fp, l):
i0 = l % 65536
i1 = (l - i0) / 65536
wi(fp, i0)
wi(fp, i1)
def rnd():
global ir, ia, ic, im
ir = (ir * ia + ic) % im
return ir / (1.0 * im)
class Encoding_layer(Layer):
"""
# This layer is used for encoding the image into audio segment
# Example
```
model.add(ClusteringLayer(n_clusters=10))
```
# Arguments
n_clusters: number of clusters.
weights: list of Numpy array with shape `(n_clusters, n_features)` witch represents the initial cluster centers.
alpha: parameter in Student's t-distribution. Default to 1.0.
# Input shape
2D tensor with shape: `(n_samples, img_rows, img_cols, img_channels)`.
# Output shape
2D tensor with shape: `(n_samples, audio_length)`.
"""
def __init__(self, **kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(Encoding_layer, self).__init__(**kwargs)
self.input_spec = InputSpec(ndim=4)
def build(self, input_shape):
assert len(input_shape) == 4
self.batch_num = input_shape[0]
self.img_rows = input_shape[1]
self.img_cols = input_shape[2]
self.img_channels = input_shape[3]
self.input_spec = InputSpec(dtype=K.floatx(), shape=(None, self.img_rows, self.img_cols, self.img_channels))
self.built = True
def call(self, inputs, **kwargs):
""" student t-distribution, as same as used in t-SNE algorithm.
q_ij = 1/(1+dist(x_i, u_j)^2), then normalize it.
Arguments:
inputs: the variable containing data, shape=(n_samples, n_features)
Return:
q: student's t-distribution, or soft labels for each sample. shape=(n_samples, n_clusters)
"""
inputs = inputs*255
#inputs = (inputs+1)*127.5
k = 0
w_pre = [0 for i in range(M)]
phi0_pre = [0 for i in range(M)]
for i in range(0, M): phi0_pre[i] = TwoPi * rnd()
# Set lin|exp (0|1) frequency distribution and random initial phase
if d==1:
for i in range(0, M): w_pre[i] = TwoPi * FL * pow(1.0 * FH / FL, 1.0 * i / (M - 1))
elif d==2:
fre = FH-FL
for i in range(0, M): w_pre[i] = TwoPi * FL + TwoPi * (fre / 2 * np.tanh(0.06*(i-M/2)) + fre/2)
else:
for i in range(0, M): w_pre[i] = TwoPi * FL + TwoPi * (FH - FL) * i / (M - 1)
if PITCH == 0:
w = w_pre
phi0 = phi0_pre
elif PITCH == 1:
w = w_pre[0:None:2]
w_half_tail = w_pre[1:None:2]
w_half_tail.reverse()
w.extend(w_half_tail)
phi0 = phi0_pre[0:None:2]
phi0_half_tail = phi0_pre[1:None:2]
phi0_half_tail.reverse()
phi0.extend(phi0_half_tail)
elif PITCH == 2:
w_pre.reverse()
w = w_pre
phi0_pre.reverse()
phi0 = phi0_pre
# convert to gray scale, image scale 0-1 ? 0-255 ?
if self.img_channels == 3:
inputs = tf.image.rgb_to_grayscale(inputs)
imgs = tf.image.resize_nearest_neighbor(inputs, [M, N])
#imgs = inputs
imgs_reverse = tf.reverse(imgs, [1])
# step 1
avg = tf.reduce_mean(imgs,axis=[1,2,3], keep_dims=True)
#avg = tf.reshape(avg,[-1, self.img_rows, self.img_cols])
px = imgs_reverse + CONTRAST*tf.subtract(imgs_reverse, avg)
px = tf.maximum(px, 0.0)
px = tf.minimum(px, 255.0)
base = tf.constant(10.0,dtype='float32')
zero = tf.constant(0.0,dtype='float32')
A = tf.where(tf.equal(px, zero), px, tf.pow(base, (px / 16 - 15) / 10.0))
# step 2
tau1 = 0.5 / w[M - 1]
tau2 = 0.25 * (tau1 * tau1)
y = yl = yr = z = zl = zr = 0.0
# expanding A
num = int(np.floor(ns/N))
B = tf.reshape(A, [self.batch_num, M, N, 1])
A_expand = tf.reshape(tf.tile(B, [1, 1, 1, num]),[self.batch_num, M, N*num])
A_expand_revese = tf.slice(A_expand, [0,0,self.img_cols*num-(ns-N*num)], [-1,-1,ns-N*num])
A_expand = tf.concat([A_expand, A_expand_revese], axis=2)
A_expand = tf.transpose(A_expand, perm=[0,2,1])
frames = tf.reshape(tf.tile(tf.range(ns, dtype='float32'), [self.batch_num]), [-1, ns])
frames = tf.tile(tf.reshape(frames, [self.batch_num, ns, 1]), [1, 1, M])
frames_dt = frames * dt
w = np.expand_dims(np.expand_dims(w,axis=0), axis=1)
phi0 = np.expand_dims(np.expand_dims(phi0,axis=0), axis=1)
s = tf.reduce_sum(A_expand * tf.sin(w*frames_dt+phi0), axis=-1)
'''
yp = y
y = tau1 / dt + tau2 / (dt * dt)
y = (s + y * yp + tau2 / dt * z) / (1.0 + y)
z = (y - yp) / dt
'''
# Laplacian kernel
#s = tf.expand_dims(s,2)
#filter = tf.constant([1,2,-6,2,1], dtype='float32')
#filter = tf.expand_dims(tf.expand_dims(filter,1),2)
#y = tf.nn.conv1d(value=s, filters=filter, stride=1, padding='SAME',data_format='NHWC')
y = tf.squeeze(s)
l = sso + 0.5 + scale * ssm * y # y = 2nd order filtered s
l = tf.maximum(l, sso - ssm)
audio = tf.minimum(l, sso - 1 + ssm)
return audio
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) == 4
return (input_shape[0], ns)
def get_config(self):
# config = {'audio_len': self.audio_len}
base_config = super(Encoding_layer, self).get_config()
# return dict(list(base_config.items()) + list(config.items()))
return base_config