forked from mhpi/hydroDL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStreamflowExample-DI.py
544 lines (506 loc) · 22.8 KB
/
StreamflowExample-DI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
import sys
sys.path.append('../')
from hydroDL import master, utils
from hydroDL.master import default
from hydroDL.master.master import loadModel, wrapMaster, writeMasterFile
from hydroDL.master.master import readMasterFile
# from hydroDL.post import plot, stat
from hydroDL.post import stat, plot
import matplotlib.pyplot as plt
from hydroDL.data import camels
from hydroDL.model.test import testModel
from hydroDL.model.train import trainModel
from hydroDL.model.rnn import CudnnLstmModel, CpuLstmModel
from hydroDL.model.crit import RmseLoss, NSELossBatch
import numpy as np
import pandas as pd
import os
import torch
import random
import datetime as dt
import json
#checking version of torch and cuda, and checking if cuda is available
print(torch.__version__)
print(torch.cuda.is_available())
print(torch.version.cuda)
# Options for different interface
interfaceOpt = 1
# ==1 default, the recommended and more interpretable version with clear data and training flow. We improved the
# original one to explicitly load and process data, set up model and loss, and train the model.
# ==0, the original "pro" version to train jobs based on the defined configuration dictionary.
# Results are very similar for two options.
flow_regime = 1
# 0: low flow expert
# 1: high flow expert
# Options for training and testing
# 0: train base model without DI
# 1: train DI model
# 0,1: do both base and DI model
# 2: test trained modelsRAPID_output_202311
Action = [0]
gpuid = -1
torch.cuda.set_device(gpuid)
device = torch.cuda.current_device() if torch.cuda.is_available() else torch.device("cpu" )
# Set hyperparameters
EPOCH = 300
BATCH_SIZE = 100
RHO = 365
HIDDENSIZE = 256
saveEPOCH = 1 # save model for every "saveEPOCH" epochs
Ttrain = [19801001, 19951001] # Training period
forType = 'daymet'
trainBuff = 365
loadTrain = True
subset_train = 'All' #give the list of basins to train on or else fix 'All' to use all
# Fix random seed
seedid = 111111
random.seed(seedid)
torch.manual_seed(seedid)
np.random.seed(seedid)
torch.cuda.manual_seed(seedid)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Change the seed to have different runnings.
# We use the mean discharge of 6 runnings with different seeds to account for randomness and report results
# Define root directory of database and output
# Modify this based on your own location of CAMELS dataset.
# Following the data download instruction in README file, you should organize the folders like
# 'your/path/to/Camels/basin_timeseries_v1p2_metForcing_obsFlow' and 'your/path/to/Camels/camels_attributes_v2.0'
# Then 'rootDatabase' here should be 'your/path/to/Camels'
# You can also define the database directory in hydroDL/__init__.py by modifying pathCamels['DB'] variable
rootDatabase = os.path.join(os.sep,"scratch", "Camels") # CAMELS dataset root directory: /scratch/Camels
camels.initcamels(flow_regime=flow_regime, rootDB=rootDatabase, forType=forType) # initialize three camels module-scope variables in camels.py: dirDB, gageDict, statDict
rootOut = os.path.join(
os.sep, "data", "kas7897", "lstm_tuning", "hydroDL", "output", "rnnStreamflow"
)
# rootOut = os.path.join(os.path.sep, 'data', 'kas7897', 'dPLHBVrelease', 'output', 'rnnStreamflow')
# Root directory to save training results: /data/rnnStreamflow
# rootOut = "./output/streamflow/"
# Root directory to save training results: /data/rnnStreamflow
if forType == 'daymet':
varF = ['dayl', 'prcp', 'srad', 'tmean', 'vp']
else:
varF = ['dayl', 'prcp', 'srad', 'tmax', 'vp']
# Define all the configurations into dictionary variables
# three purposes using these dictionaries. 1. saved as configuration logging file. 2. for future testing. 3. can also
# be used to directly train the model when interfaceOpt == 0
# define dataset
# default module stores default configurations, using update to change the config
attrLst = [ 'p_mean','pet_mean','p_seasonality','frac_snow','aridity','high_prec_freq','high_prec_dur',
'low_prec_freq','low_prec_dur', 'elev_mean', 'slope_mean', 'area_gages2', 'frac_forest', 'lai_max',
'lai_diff', 'gvf_max', 'gvf_diff', 'dom_land_cover_frac', 'dom_land_cover', 'root_depth_50',
'soil_depth_pelletier', 'soil_depth_statsgo', 'soil_porosity', 'soil_conductivity',
'max_water_content', 'sand_frac', 'silt_frac', 'clay_frac', 'geol_1st_class', 'glim_1st_class_frac',
'geol_2nd_class', 'glim_2nd_class_frac', 'carbonate_rocks_frac', 'geol_porostiy', 'geol_permeability']
optData = default.optDataCamels
optData = default.update(
optData, varT=varF, varC=attrLst, tRange=Ttrain, forType=forType, subset=subset_train) # Update the training period
# if (interfaceOpt == 1) and (2 not in Action):
if (interfaceOpt == 1) and (loadTrain is True):
# load training data explicitly for the interpretable interface. Notice: if you want to apply our codes to your own
# dataset, here is the place you can replace data.
# read data from original CAMELS dataset
# df: CAMELS dataframe; x: forcings[nb,nt,nx]; y: streamflow obs[nb,nt,ny]; c:attributes[nb,nc]
# nb: number of basins, nt: number of time steps (in Ttrain), nx: number of time-dependent forcing variables
# ny: number of target variables, nc: number of constant attributes
df = camels.DataframeCamels(subset=optData["subset"], tRange=optData["tRange"], forType=forType)
x = df.getDataTs(varLst=optData["varT"], doNorm=False, rmNan=False, flow_regime=flow_regime)
y = df.getDataObs(doNorm=False, rmNan=False, basinnorm=False, flow_regime=flow_regime)
# transform discharge from ft3/s to mm/day and then divided by mean precip to be dimensionless.
# output = discharge/(area*mean_precip)
# this can also be done by setting the above option "basinnorm = True" for df.getDataObs()
y_temp = camels.basinNorm(y, optData["subset"], toNorm=True)
c = df.getDataConst(varLst=optData["varC"], doNorm=False, rmNan=False, flow_regime=flow_regime)
# process, do normalization and remove nan
series_data = np.concatenate([x, y_temp], axis=2)
seriesvarLst = varF + ["runoff"]
# calculate statistics for norm and saved to a dictionary
statDict = camels.getStatDic(
flow_regime=flow_regime,
attrLst=attrLst,
attrdata=c,
seriesLst=seriesvarLst,
seriesdata=series_data,
)
# normalize
attr_norm = camels.transNormbyDic(c, attrLst, statDict, toNorm=True, flow_regime=flow_regime)
attr_norm[np.isnan(attr_norm)] = 0.0
series_norm = camels.transNormbyDic(
series_data, seriesvarLst, statDict, toNorm=True, flow_regime=flow_regime
)
# prepare the inputs
xTrain = series_norm[:, :, :-1] # forcing, not include obs
xTrain[np.isnan(xTrain)] = 0.0
yTrain = np.expand_dims(series_norm[:, :, -1], 2)
attrs = attr_norm
# define model and update configure
if torch.cuda.is_available():
optModel = default.optLstm
else:
optModel = default.update(default.optLstm, name="hydroDL.model.rnn.CpuLstmModel")
optModel = default.update(default.optLstm, hiddenSize=HIDDENSIZE)
# define loss function
if flow_regime==0:
optLoss = default.optLossRMSE
elif flow_regime==1:
optLoss = default.optLossNSEBatch
# define training options
optTrain = default.update(
default.optTrainCamels,
miniBatch=[BATCH_SIZE, RHO],
nEpoch=EPOCH,
saveEpoch=saveEPOCH,
seed=seedid,
trainBuff=trainBuff
)
# define output folder for model results
exp_name = f"CAMELSDemo{seedid}"
exp_disp = "TestRun"
save_path = os.path.join(
exp_name,
exp_disp,
"epochs{}_batch{}_rho{}_hiddensize{}_Tstart{}_Tend{}_trainBuff{}_flowregime{}".format(
optTrain["nEpoch"],
optTrain["miniBatch"][0],
optTrain["miniBatch"][1],
optModel["hiddenSize"],
optData["tRange"][0],
optData["tRange"][1],
optTrain['trainBuff'],
flow_regime,
),
)
# Train the base model without data integration
if 0 in Action:
out = os.path.join(rootOut, save_path, "All") # output folder to save results
# Wrap up all the training configurations to one dictionary in order to save into "out" folder
masterDict = wrapMaster(out, optData, optModel, optLoss, optTrain)
if interfaceOpt == 1: # use the more interpretable version interface
nx = xTrain.shape[-1] + attrs.shape[-1] # update nx, nx = nx + nc
ny = yTrain.shape[-1]
# load model for training
if torch.cuda.is_available():
model = CudnnLstmModel(nx=nx, ny=ny, hiddenSize=HIDDENSIZE)
else:
model = CpuLstmModel(nx=nx, ny=ny, hiddenSize=HIDDENSIZE)
optModel = default.update(optModel, nx=nx, ny=ny)
# the loaded model should be consistent with the 'name' in optModel Dict above for logging purpose
if flow_regime==0:
lossFun = RmseLoss()
elif flow_regime==1:
lossFun = NSELossBatch(np.nanstd(yTrain, axis=1),device = device)
# the loaded loss should be consistent with the 'name' in optLoss Dict above for logging purpose
# update and write the dictionary variable to out folder for logging and future testing
masterDict = wrapMaster(out, optData, optModel, optLoss, optTrain)
writeMasterFile(masterDict)
# log statistics
statFile = os.path.join(out, "statDict.json")
with open(statFile, "w") as fp:
json.dump(statDict, fp, indent=4)
# train model
model = trainModel(
model,
xTrain,
yTrain,
attrs,
lossFun,
nEpoch=EPOCH,
miniBatch=[BATCH_SIZE, RHO],
saveEpoch=saveEPOCH,
saveFolder=out,
bufftime=trainBuff
)
elif interfaceOpt == 0: # directly train the model using dictionary variable
master.train(masterDict)
# Train DI model
if 1 in Action:
nDayLst = [1, 3]
for nDay in nDayLst:
# nDay: previous Nth day observation to integrate
# update parameter "daObs" for data dictionary variable
optData = default.update(default.optDataCamels, daObs=nDay)
# define output folder for DI models
out = os.path.join(rootOut, save_path, "All-DI" + str(nDay))
masterDict = wrapMaster(out, optData, optModel, optLoss, optTrain)
if interfaceOpt == 1:
# optData['daObs'] != 0, load previous observation data to integrate
sd = utils.time.t2dt(optData["tRange"][0]) - dt.timedelta(days=nDay)
ed = utils.time.t2dt(optData["tRange"][1]) - dt.timedelta(days=nDay)
dfdi = camels.DataframeCamels(subset=optData["subset"], tRange=[sd, ed])
datatemp = dfdi.getDataObs(
doNorm=False, rmNan=False, basinnorm=True, flow_regime=flow_regime
) # 'basinnorm=True': output = discharge/(area*mean_precip)
# normalize data
dadata = camels.transNormbyDic(datatemp, "runoff", statDict, toNorm=True, flow_regime=flow_regime)
dadata[np.where(np.isnan(dadata))] = 0.0
xIn = np.concatenate([xTrain, dadata], axis=2)
nx = xIn.shape[-1] + attrs.shape[-1] # update nx, nx = nx + nc
ny = yTrain.shape[-1]
# load model for training
if torch.cuda.is_available():
model = CudnnLstmModel(nx=nx, ny=ny, hiddenSize=HIDDENSIZE)
else:
model = CpuLstmModel(nx=nx, ny=ny, hiddenSize=HIDDENSIZE)
optModel = default.update(optModel, nx=nx, ny=ny)
lossFun = RmseLoss()
# update and write dictionary variable to out folder for logging and future testing
masterDict = wrapMaster(out, optData, optModel, optLoss, optTrain)
writeMasterFile(masterDict)
# log statistics
statFile = os.path.join(out, "statDict.json")
with open(statFile, "w") as fp:
json.dump(statDict, fp, indent=4)
# train model
model = trainModel(
model,
xIn,
yTrain,
attrs,
lossFun,
nEpoch=EPOCH,
miniBatch=[BATCH_SIZE, RHO],
saveEpoch=saveEPOCH,
saveFolder=out,
)
elif interfaceOpt == 0:
master.train(masterDict)
# Test models
if 2 in Action:
testTrainBuff = True
loadtrainBuff = 0
TestEPOCH = 300 # choose the model to test after trained "TestEPOCH" epoches
# generate a folder name list containing all the tested model output folders
caseLst = [] #If you want to test model without DI, you must write "All" in caseLst,othervise it must be empty
# optData = default.update(default.optDataCamels, daObs=1)
if optData["daObs"] == 0:
nDayLst = [1, 3] # which DI models to test: DI(1), DI(3)
for nDay in nDayLst:
caseLst.append("All-DI" + str(nDay))
outLst = [
os.path.join(rootOut, save_path, x) for x in caseLst
]
# outLst = [os.path.join(rootOut, save_path)]
# outLst includes all the directories to test
subset = "All" # 'All': use all the CAMELS gages to test; Or pass the gage list
tRange = [19951001, 20101001]
TestBuff = xTrain.shape[1] - loadtrainBuff # Testing period
testBatch = 15 # do batch forward to save GPU memory
predLst = list()
for out in outLst:
if interfaceOpt == 1: # use the more interpretable version interface
# load testing data
mDict = readMasterFile(out)
optData = mDict["data"]
df = camels.DataframeCamels(subset=subset, tRange=tRange, forType=optData['forType'])
x = df.getDataTs(varLst=optData["varT"], doNorm=False, rmNan=False, flow_regime=flow_regime)
obs = df.getDataObs(doNorm=False, rmNan=False, basinnorm=False, flow_regime=flow_regime)
c = df.getDataConst(varLst=optData["varC"], doNorm=False, rmNan=False, flow_regime=flow_regime)
# do normalization and remove nan
# load the saved statDict to make sure using the same statistics as training data
statFile = os.path.join(out, "statDict.json")
with open(statFile, "r") as fp:
statDict = json.load(fp)
seriesvarLst = optData["varT"]
attrLst = optData["varC"]
attr_norm = camels.transNormbyDic(c, attrLst, statDict, toNorm=True, flow_regime=flow_regime)
attr_norm[np.isnan(attr_norm)] = 0.0
xTest = camels.transNormbyDic(x, seriesvarLst, statDict, toNorm=True, flow_regime=flow_regime)
xTest[np.isnan(xTest)] = 0.0
attrs = attr_norm
if testTrainBuff is True:
xTestBuff = xTrain[:, -TestBuff:, :]
xTest = np.concatenate([xTestBuff, xTest], axis=1)
if optData["daObs"] > 0:
# optData['daObs'] != 0, load previous observation data to integrate
nDay = optData["daObs"]
sd = utils.time.t2dt(tRange[0]) - dt.timedelta(days=nDay)
ed = utils.time.t2dt(tRange[1]) - dt.timedelta(days=nDay)
dfdi = camels.DataframeCamels(subset=subset, tRange=[sd, ed])
datatemp = dfdi.getDataObs(
doNorm=False, rmNan=False, basinnorm=True, flow_regime=flow_regime)
# 'basinnorm=True': output = discharge/(area*mean_precip)
# normalize data
dadataTest = camels.transNormbyDic(
datatemp, "runoff", statDict, toNorm=True, flow_regime=flow_regime
)
dadataTest[np.where(np.isnan(dadataTest))] = 0.0
dadata = dadataTest
if testTrainBuff:
nDay = optData["daObs"]
sd = utils.time.t2dt(Ttrain[0]) - dt.timedelta(days=nDay)
ed = utils.time.t2dt(Ttrain[1]) - dt.timedelta(days=nDay)
dfdi = camels.DataframeCamels(subset=subset, tRange=[sd, ed])
datatemp = dfdi.getDataObs(
doNorm=False, rmNan=False, basinnorm=True, flow_regime=flow_regime)
# 'basinnorm=True': output = discharge/(area*mean_precip)
# normalize data
dadataTrain = camels.transNormbyDic(
datatemp, "runoff", statDict, toNorm=True, flow_regime=flow_regime
)
dadataTrain[np.where(np.isnan(dadataTrain))] = 0.0
dadata = np.concatenate([dadataTrain, dadataTest], axis=1)
xIn = np.concatenate([xTest, dadata], axis=2)
else:
xIn = xTest
# load and forward the model for testing
testmodel = loadModel(out, epoch=TestEPOCH)
filePathLst = master.master.namePred(
out, tRange, "All", epoch=TestEPOCH
) # prepare the name of csv files to save testing results
testModel(
testmodel, xIn, c=attrs, batchSize=testBatch, filePathLst=filePathLst
)
# read out predictions
# dataPred = np.ndarray([obs.shape[0], obs.shape[1], len(filePathLst)])
dataPred = np.ndarray([xTest.shape[0], xTest.shape[1], len(filePathLst)])
for k in range(len(filePathLst)):
filePath = filePathLst[k]
dataPred[:, :, k] = pd.read_csv(
filePath, dtype=float, header=None
).values
# transform back to the original observation
temppred = camels.transNormbyDic(dataPred, "runoff", statDict, toNorm=False, flow_regime=flow_regime)
pred = camels.basinNorm(temppred, subset, toNorm=False)
elif interfaceOpt == 0: # only for models trained by the pro interface
df, pred, obs = master.test(
out,
tRange=tRange,
subset=subset,
batchSize=testBatch,
basinnorm=True,
epoch=TestEPOCH,
reTest=True,
)
# change the units ft3/s to m3/s
# if testTrainBuff is True:
# obs = obs[:, 0:, :] * 0.0283168
# else:
# obs = obs * 0.0283168
# # obs = obs * 0.0283168
# pred = pred * 0.0283168
# pred = pred * 0.0283168
#######
if testTrainBuff is True:
pred = pred[:, TestBuff:, :] * 0.0283168
else:
pred = pred * 0.0283168
# obs = obs * 0.0283168
obs = obs * 0.0283168
##########
# prediction and obs to mm/day
obs = camels.basinTrans(obs, subset)
pred = camels.basinTrans(pred, subset)
predLst.append(pred) # the prediction list for all the models
# calculate statistic metrics
statDictLst = [stat.statError(x.squeeze(), obs.squeeze()) for x in predLst]
# Show boxplots of the results
plt.rcParams["font.size"] = 14
keyLst = ["NSE", "KGE", "FLV", "FHV", "absFLV", "absFHV", "highRMSE", "lowRMSE", "midRMSE", "rdMax"]
dataBox = list()
for iS in range(len(keyLst)):
statStr = keyLst[iS]
temp = list()
for k in range(len(statDictLst)):
data = statDictLst[k][statStr]
data = data[~np.isnan(data)]
temp.append(data)
dataBox.append(temp)
print(
f"NSE : {np.nanmedian(dataBox[0][0])}\n,KGE : {np.nanmedian(dataBox[1][0])}\n, FLV : {np.nanmedian(dataBox[2][0])}\n, FHV : {np.nanmedian(dataBox[3][0])}\n, absFLV : {np.nanmedian(dataBox[4][0])}\n, absFHV : {np.nanmedian(dataBox[5][0])}\n, highRMSE (mm/day) : {np.nanmedian(dataBox[6][0])}\n, lowRMSE : {np.nanmedian(dataBox[7][0])}\n (mm/day),midRMSE : {np.nanmedian(dataBox[8][0])}\n(mm/day),rdMax : {np.nanmedian(dataBox[9][0])} ",
)
labelname = ["LSTM"]
if optData["daObs"] > 0:
for nDay in nDayLst:
labelname.append("DI(" + str(nDay) + ")")
# xlabel = ["Bias ($\mathregular{m^3}$/s)", "NSE", "FLV(%)", "FHV(%)"]
xlabel = keyLst
fig = plot.plotBoxFig(dataBox, xlabel, labelname, sharey=False, figsize=(12, 5))
fig.patch.set_facecolor("white")
fig.show()
plt.savefig(os.path.join(rootOut, save_path, "Boxplot.png"), dpi=500)
# Plot timeseries and locations
plt.rcParams["font.size"] = 12
# get Camels gages info
gageinfo = camels.gageDict
gagelat = gageinfo["lat"]
gagelon = gageinfo["lon"]
# randomly select 7 gages to plot
gageindex = np.random.randint(0, 671, size=7).tolist()
plat = gagelat[gageindex]
plon = gagelon[gageindex]
t = utils.time.tRange2Array(tRange)
fig, axes = plt.subplots(4, 2, figsize=(12, 10), constrained_layout=True)
axes = axes.flat
npred = 2 # plot the first two prediction: Base LSTM and DI(1)
subtitle = ["(a)", "(b)", "(c)", "(d)", "(e)", "(f)", "(g)", "(h)", "(k)", "(l)"]
txt = ["a", "b", "c", "d", "e", "f", "g", "h", "k"]
ylabel = "Flow rate ($\mathregular{m^3}$/s)"
for k in range(len(gageindex)):
iGrid = gageindex[k]
yPlot = [obs[iGrid, :]]
for y in predLst[0:npred]:
yPlot.append(y[iGrid, :])
# get the NSE value of LSTM and DI(1) model
NSE_LSTM = str(round(statDictLst[0]["NSE"][iGrid], 2))
if optData["daObs"] > 0:
NSE_DI1 = str(round(statDictLst[1]["NSE"][iGrid], 2))
else:
NSE_DI1 = 'nil'
# plot time series
plot.plotTS(
t,
yPlot,
ax=axes[k],
cLst="kbrmg",
markerLst="---",
legLst=["USGS", "LSTM: " + NSE_LSTM, "DI(1): " + NSE_DI1],
title=subtitle[k],
linespec=["-", ":", ":"],
ylabel=ylabel,
)
# plot gage location
plot.plotlocmap(
plat,
plon,
ax=axes[-1],
baclat=gagelat,
baclon=gagelon,
title=subtitle[-1],
txtlabel=txt,
)
fig.patch.set_facecolor("white")
fig.show()
plt.savefig(os.path.join(rootOut, save_path, "Timeseries.png"), dpi=500)
# Plot NSE spatial patterns
gageinfo = camels.gageDict
gagelat = gageinfo["lat"]
gagelon = gageinfo["lon"]
fig, axs = plt.subplots(3, 1, figsize=(8, 8), constrained_layout=True)
axs = axs.flat
data = statDictLst[0]["NSE"]
plot.plotMap(
data,
ax=axs[0],
lat=gagelat,
lon=gagelon,
title="(a) LSTM",
cRange=[0.0, 1.0],
shape=None,
)
if optData["daObs"] > 0:
data = statDictLst[1]["NSE"]
plot.plotMap(
data,
ax=axs[1],
lat=gagelat,
lon=gagelon,
title="(b) DI(1)",
cRange=[0.0, 1.0],
shape=None,
)
deltaNSE = statDictLst[1]["NSE"] - statDictLst[0]["NSE"]
plot.plotMap(
deltaNSE, ax=axs[2], lat=gagelat, lon=gagelon, title="(c) Delta NSE", shape=None
)
fig.show()
plt.savefig(os.path.join(rootOut, save_path, "NSEPattern.png"), dpi=500)