forked from mhpi/hydroDL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultiscale.py
120 lines (99 loc) · 4.07 KB
/
multiscale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import torch
import random
import numpy as np
from hydroDL.model.crit import RmseLoss
from hydroDL.data.load_csv import LoadCSV
from hydroDL.master.master import loadModel
from hydroDL.model.rnn import CudnnLstmModel as LSTM
from hydroDL.model.rnn import CpuLstmModel as LSTM_CPU
from hydroDL.model.train_multi import trainModel, testModel
root_DB = "./hydroDL_zenodo/example/multiscale/coarse_resolution" # location of fine-resolution datasets
root_fine = "./hydroDL_zenodo/example/multiscale/fine_resolution" # location of coarse-resolution datasets
root_site = "./hydroDL_zenodo/example/multiscale/insitu" # location of in-situ datasets
all_csv_range = ["2016-01-01", "2019-12-31"] # date for all datasets in the folder
train_range = ["2016-01-01", "2018-12-31"] # date for training period
var_time_series = ["APCP", "TMP", "DLWRF", "DSWRF", "SPFH", "PRES"] # forcing datasets
var_constant = ["Albedo", "landcover", "Capa", "NDVI", "T_BULK_DEN", "T_SILT", "T_SAND",
"T_CLAY", ] # constant datasets
target = ["SM"] # target datasets
BATCH_SIZE = 50
RHO = 30
EPOCHS = 40
SAVE_EPOCH = 1
SEED = 42
HIDDEN_SIZE = 256
out = os.path.join("output", "multiscale") # save location
# Specify the GPU for training
if torch.cuda.is_available():
LSTM = LSTM
torch.cuda.set_device(0)
else:
LSTM = LSTM_CPU
# Set random seeds to guarantee the same result
def set_seed(seed):
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
set_seed(SEED)
# get in-situ datasets
load_insitu = LoadCSV(root_site, train_range, all_csv_range)
y_site = load_insitu.load_time_series(target, do_norm=True, remove_nan=False)
x_site = load_insitu.load_time_series(var_time_series, do_norm=True, remove_nan=True)
c_site = load_insitu.load_constant(var_constant, do_norm=True, remove_nan=True, convert_time_series=False)
nx_site = x_site.shape[-1] + c_site.shape[-1]
ny_site = y_site.shape[-1]
# get forcing datasets
load_fine = LoadCSV(root_fine, train_range, all_csv_range)
x_fine = load_fine.load_time_series(var_time_series, do_norm=True, remove_nan=True)
c_fine = load_fine.load_constant(var_constant, do_norm=True, remove_nan=True, convert_time_series=False)
nx_fine = x_fine.shape[-1] + c_fine.shape[-1]
# get target datasets
load_coarse = LoadCSV(root_DB, train_range, all_csv_range)
y_coarse = load_coarse.load_time_series(target, do_norm=True, remove_nan=False)
ny_coarse = y_coarse.shape[-1]
# define model and loss function
loss_fn = RmseLoss()
model = LSTM(nx=nx_fine, ny=ny_coarse, hiddenSize=HIDDEN_SIZE)
opt = {"root_DB": root_DB, "target": target, "out": out}
# training the model
model = trainModel(
model,
(x_fine, y_coarse, c_fine),
(x_site, y_site, c_site),
loss_fn,
nEpoch=EPOCHS,
miniBatch=[BATCH_SIZE, RHO],
saveEpoch=SAVE_EPOCH,
opt=opt,
)
# testing the results
test_range = ["2019-01-01", "2019-12-31"] # date for testing
TEST_EPOCH = 43 # select the epoch for testing
# get in-situ datasets
load_insitu = LoadCSV(root_site, test_range, all_csv_range)
y_site = load_insitu.load_time_series(target, do_norm=True, remove_nan=False)
x_site = load_insitu.load_time_series(var_time_series, do_norm=True, remove_nan=True)
c_site = load_insitu.load_constant(var_constant, do_norm=True, remove_nan=True, convert_time_series=False)
# get forcing datasets
load_fine = LoadCSV(root_fine, test_range, all_csv_range)
x_fine = load_fine.load_time_series(var_time_series, do_norm=True, remove_nan=True)
c_fine = load_fine.load_constant(var_constant, do_norm=True, remove_nan=True, convert_time_series=False)
# get target datasets
load_coarse = LoadCSV(root_DB, test_range, all_csv_range)
y_coarse = load_coarse.load_time_series(target, do_norm=True, remove_nan=False)
# validation
print(TEST_EPOCH + 1)
test_model = loadModel(out, epoch=TEST_EPOCH + 1)
median_dict_in_situ = testModel(
test_model,
(x_fine, y_coarse, c_fine),
(x_site, y_site, c_site),
batchSize=10,
filePathLst=[out],
opt=opt,
)
print(median_dict_in_situ)