-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKnapsackProblem.cpp
74 lines (57 loc) · 2.38 KB
/
KnapsackProblem.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#include <bits/stdc++.h>
using namespace std;
/*———————————————————————————————————————————————————————————————————————————*/
int knapsack_dp(int n, int M, int w[], int p[]){
int i,j;
//create a matrix to memoize the values using dynamic programming
int knapsack[n+1][M+1];
//knapsack[i][j] denotes the maximum attainable value of items in knapsack with i available items and capacity of knapsack being j
//initializing knapsack[0][j]=0 for 0<=j<=M because if there is no item, no value can be attained
for(j = 0; j <= M; j++)
knapsack[0][j] = 0;
//initializing knapsack[i][0]=0 for 0<=i<=n, because in a bag of zero capacity, no item can be placed
for(i = 0; i <= n; i++)
knapsack[i][0] = 0;
//now, filling the matrix in bottom up manner
for(i = 1; i <= n; i++){
for(j = 1; j <= M; j++){
//check if the weight of current item i is less than or equal to the capacity of sack, take maximum of once including the current item and once not including
if(w[i-1] <= j){
knapsack[i][j] = max(knapsack[i-1][j], p[i-1]+knapsack[i-1][j-w[i-1]]);
}
//can not include the current item in this case
else{
knapsack[i][j] = knapsack[i-1][j];
}
}
}
return knapsack[n][M];
}
/*———————————————————————————————————————————————————————————————————————————*/
int main(){
int i, j;
int n; //number of items
int M; //capacity of knapsack
cout << "Enter the no. of items : ";
cin >> n;
int w[n]; //weight of items
int p[n]; //value of items
cout << "Enter the weight and price of all items : " << endl;
for(i = 0; i < n; i++){
cin >> w[i] >> p[i];
}
cout << "enter the capacity of knapsack : ";
cin >> M;
int result = knapsack_dp(n, M, w, p);
//the maximum value will be given by knasack[n][M], ie. using n items with capacity M
cout << "The maximum value of items that can be put into knapsack is : " << result;
return 0;
}
/*
Sample Input:
2 50
5 35
1 10
6 45
3 40
*/