-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreplay.py
54 lines (43 loc) · 1.69 KB
/
replay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from collections import namedtuple
import numpy as np
import torch
Transition = namedtuple('Transition',
('state', 'action', 'next_state', 'reward'))
device = "cuda" if torch.cuda.is_available() else "cpu"
class ReplayBuffer:
def __init__(
self,
capacity: int,
):
self._capacity = capacity
self._num_added = 0
self._storage = [None] * capacity
def add(self, state, next_state, reward, action) -> None:
if reward is not None:
state = torch.from_numpy(state).unsqueeze(0).to(device)
next_state = torch.from_numpy(next_state).unsqueeze(0).to(device)
action = torch.tensor(action).unsqueeze(0).to(device)
reward = torch.tensor(reward, dtype=torch.float32).unsqueeze(0).to(device)
self._storage[self._num_added % self._capacity] = Transition(state,
action,
next_state,
reward)
self._num_added += 1
def get(self, indices) -> list:
pass
def sample(self, batch_size: int = 1):
indices = np.random.randint(0, self.size, batch_size)
samples = [self._storage[i] for i in indices]
return samples
@property
def capacity(self) -> int:
return self._capacity
@property
def size(self) -> int:
return min(self._num_added, self._capacity)
@property
def steps_done(self) -> int:
return self._num_added
@property
def storage(self) -> list:
return self._storage