-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFloyd-Warshall.java
93 lines (78 loc) · 2.5 KB
/
Floyd-Warshall.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import java.util.*;
import java.lang.*;
import java.io.*;
class AllPairShortestPath
{
//final: In Java we use final keyword to variables to make its values not to be changed.
//INF : infinity (we set it to largest value to use it in the code)
// V : 4 (taking 4 vertices)
final static int INF = 99999, V = 4;
void floydWarshall(int graph[][])
{
int dist[][] = new int[V][V];
int i, j, k;
//Moving the Matrix to 4*4 schema
// That's why we assigned the value V : 4
for (i = 0; i < V; i++)
for (j = 0; j < V; j++)
dist[i][j] = graph[i][j];
// Introducing an Intermediate "K" in between.
for (k = 0; k < V; k++)
{
// Pick all vertices as source one by one
for (i = 0; i < V; i++)
{
// Pick all vertices as destination for the
// above picked source
for (j = 0; j < V; j++)
{
// If vertex k is on the shortest path from
// i to j, then update the value of dist[i][j]
if (dist[i][k] + dist[k][j] < dist[i][j])
dist[i][j] = dist[i][k] + dist[k][j];
}
}
}
// Print the shortest distance matrix
printSolution(dist);
}
void printSolution(int dist[][])
{
System.out.println("Following matrix shows the shortest "+
"distances between every pair of vertices");
for (int i=0; i<V; ++i)
{
for (int j=0; j<V; ++j)
{
if (dist[i][j]==INF)
System.out.print("INF ");
else
System.out.print(dist[i][j]+" ");
}
System.out.println();
}
}
// Driver program to test above function
public static void main (String[] args)
{
int graph[][] = { {0, 5, INF, 10},
{INF, 0, 3, INF},
{INF, INF, 0, 1},
{INF, INF, INF, 0}
};
AllPairShortestPath a = new AllPairShortestPath();
// Print the solution
a.floydWarshall(graph);
}
}
/*
#include <limits.h>
#define INF INT_MAX
..........................
if ( dist[i][k] != INF &&
dist[k][j] != INF &&
dist[i][k] + dist[k][j] < dist[i][j]
)
dist[i][j] = dist[i][k] + dist[k][j];
...........................
*/