-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfamdb_data_loaders.py
578 lines (482 loc) · 20.1 KB
/
famdb_data_loaders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
import time
import os
import gzip
import json
import re
import sys
from sqlalchemy import bindparam
from sqlalchemy.ext import baked
sys.path.append(os.path.join(os.path.dirname(__file__), "../Schemata/ORMs/python"))
import dfamorm as dfam
from famdb_helper_classes import TaxNode, ClassificationNode
from famdb_helper_methods import sanitize_name
from famdb_globals import LOGGER
import famdb
def load_taxonomy_from_db(session, relevant_nodes):
"""
Loads all taxonomy nodes and names from the database.
Returns [nodes, lookup]
nodes is a dict of tax_id to TaxNode objects.
lookup is a dict of (sanitized) species name to tax_id.
"""
nodes = {}
LOGGER.info("Reading taxonomy nodes from database")
start = time.perf_counter()
for tax_node in (
session.query(dfam.NcbiTaxdbNode.tax_id, dfam.NcbiTaxdbNode.parent_id)
.filter(dfam.NcbiTaxdbNode.tax_id.in_(relevant_nodes))
.all()
):
nodes[tax_node.tax_id] = TaxNode(tax_node.tax_id, tax_node.parent_id)
for node in nodes.values():
if node.tax_id != 1:
node.parent_node = nodes[node.parent_id]
node.parent_node.children += [node]
delta = time.perf_counter() - start
LOGGER.info("Loaded %d taxonomy nodes in %f seconds", len(nodes), delta)
LOGGER.info("Reading taxonomy names from database")
start = time.perf_counter()
lookup = {}
# Load *all* names. As the number of included names grows large this
# is actually faster than loading only the needed ones from the
# database, at the cost of memory usage TODO fix this with the filter/partition loop
for entry in session.query(
dfam.NcbiTaxdbName.tax_id,
dfam.NcbiTaxdbName.name_txt,
dfam.NcbiTaxdbName.unique_name,
dfam.NcbiTaxdbName.name_class,
dfam.NcbiTaxdbName.sanitized_name,
).filter(dfam.NcbiTaxdbName.tax_id.in_(relevant_nodes)):
name = entry.unique_name or entry.name_txt
name_class = entry.name_class
nodes[entry.tax_id].names += [
[name_class, name],
[f"sanitized {name_class}", entry.sanitized_name],
]
if name_class == "scientific name":
# sanitized_name = sanitize_name(name).lower()
lookup[entry.sanitized_name] = entry.tax_id
delta = time.perf_counter() - start
LOGGER.info("Loaded taxonomy names in %f", delta)
return nodes, lookup
def load_taxonomy_from_dump(dump_dir, relevant_nodes):
"""
Loads all taxonomy nodes and names from a dump of the NCBI
taxonomy database (specifically, node.dmp and names.dmp).
Returns [nodes, lookup]
nodes is a dict of tax_id to TaxNode objects.
lookup is a dict of (sanitized) species name to tax_id.
"""
nodes = {}
LOGGER.info("Reading taxonomy nodes from nodes.dmp")
start = time.perf_counter()
with open(os.path.join(dump_dir, "nodes.dmp")) as nodes_file:
for line in nodes_file:
fields = line.split("|")
tax_id = int(fields[0])
if tax_id in relevant_nodes:
parent_id = int(fields[1])
nodes[tax_id] = TaxNode(tax_id, parent_id)
for node in nodes.values():
if node.tax_id != 1:
node.parent_node = nodes[node.parent_id]
node.parent_node.children += [node]
delta = time.perf_counter() - start
LOGGER.info("Loaded %d taxonomy nodes in %f seconds", len(nodes), delta)
LOGGER.info("Reading taxonomy names from names.dmp")
start = time.perf_counter()
lookup = {}
with open(os.path.join(dump_dir, "names.dmp")) as names_file:
for line in names_file:
fields = line.split("|")
tax_id = int(fields[0])
if tax_id in relevant_nodes:
name_txt = fields[1].strip()
unique_name = fields[2].strip()
name_class = fields[3].strip()
name = unique_name or name_txt
nodes[tax_id].names += [[name_class, name]]
if name_class == "snientific name":
sanitized_name = sanitize_name(name).lower()
lookup[sanitized_name] = tax_id
delta = time.perf_counter() - start
LOGGER.info("Loaded taxonomy names in %f", delta)
return nodes, lookup
def load_classification(session):
"""Loads all classification nodes from the database."""
nodes = {}
LOGGER.info("Reading classification nodes")
start = time.perf_counter()
for class_node, type_name, subtype_name in (
session.query(
dfam.Classification,
dfam.RepeatmaskerType.name,
dfam.RepeatmaskerSubtype.name,
)
.outerjoin(dfam.RepeatmaskerType)
.outerjoin(dfam.RepeatmaskerSubtype)
.all()
):
class_id = class_node.id
parent_id = class_node.parent_id and int(class_node.parent_id)
name = class_node.name
nodes[class_id] = ClassificationNode(
class_id, parent_id, name, type_name, subtype_name
)
for node in nodes.values():
if node.parent_id is not None:
node.parent_node = nodes[node.parent_id]
node.parent_node.children += [node]
delta = time.perf_counter() - start
LOGGER.info("Loaded %d classification nodes in %f", len(nodes), delta)
return nodes
def iterate_db_families(session, families_query):
"""Returns an iterator over families in the Dfam MySQL database."""
class_db = load_classification(session)
# A "bakery" caches queries. The performance gains are worth it here, where
# the queries are done many times with only the id changing. Another
# approach that could be used is to make each of these queries once instead
# of in a loop, but that would require a more significant restructuring.
#
# NOTE: This feature is deprecated in SQLAalchemy 1.4 and 2.0 and is rolled
# into the core behaviour. To execute this query efficiently in the future
# we simply need to roll it into a function like so:
# TODO: refactor
# def my_query(connection, parameter):
# stmt = select(dfam.t_family_clade)
# stmt = stmt.where(dfam.t_family_clade.c.dfam_taxdb_tax_id == parameter)
# return connection.execute(stmt)
#
# Also to control the size of the cache simply pass query_cache_size to the
# engine creation statement like so:
#
# engine = create_engine("mysql://.....", query_cache_size=1200)
#
# See: https://docs.sqlalchemy.org/en/14/core/connections.html#sql-caching
#
bakery = baked.bakery()
clade_query = bakery(lambda s: s.query(dfam.t_family_clade.c.dfam_taxdb_tax_id))
clade_query += lambda q: q.filter(
dfam.t_family_clade.c.family_id == bindparam("id")
)
search_stage_query = bakery(
lambda s: s.query(dfam.t_family_has_search_stage.c.repeatmasker_stage_id)
)
search_stage_query += lambda q: q.filter(
dfam.t_family_has_search_stage.c.family_id == bindparam("id")
)
buffer_stage_query = bakery(
lambda s: s.query(
dfam.FamilyHasBufferStage.repeatmasker_stage_id,
dfam.FamilyHasBufferStage.start_pos,
dfam.FamilyHasBufferStage.end_pos,
)
)
buffer_stage_query += lambda q: q.filter(
dfam.FamilyHasBufferStage.family_id == bindparam("id")
)
assembly_data_query = bakery(
lambda s: s.query(
dfam.Assembly.dfam_taxdb_tax_id,
dfam.FamilyAssemblyDatum.hmm_hit_GA,
dfam.FamilyAssemblyDatum.hmm_hit_TC,
dfam.FamilyAssemblyDatum.hmm_hit_NC,
dfam.FamilyAssemblyDatum.hmm_fdr,
)
)
assembly_data_query += lambda q: q.filter(
dfam.FamilyAssemblyDatum.family_id == bindparam("id")
)
assembly_data_query += lambda q: q.filter(
dfam.Assembly.id == dfam.FamilyAssemblyDatum.assembly_id
)
feature_query = bakery(lambda s: s.query(dfam.FamilyFeature))
feature_query += lambda q: q.filter(dfam.FamilyFeature.family_id == bindparam("id"))
feature_attr_query = bakery(lambda s: s.query(dfam.FeatureAttribute))
feature_attr_query += lambda q: q.filter(
dfam.FeatureAttribute.family_feature_id == bindparam("id")
)
cds_query = bakery(lambda s: s.query(dfam.CodingSequence))
cds_query += lambda q: q.filter(dfam.CodingSequence.family_id == bindparam("id"))
alias_query = bakery(lambda s: s.query(dfam.FamilyDatabaseAlia))
alias_query += lambda q: q.filter(
dfam.FamilyDatabaseAlia.family_id == bindparam("id")
)
citation_query = bakery(
lambda s: s.query(
dfam.Citation.title,
dfam.Citation.authors,
dfam.Citation.journal,
dfam.FamilyHasCitation.order_added,
)
)
citation_query += lambda q: q.filter(
dfam.Citation.pmid == dfam.FamilyHasCitation.citation_pmid
)
citation_query += lambda q: q.filter(
dfam.FamilyHasCitation.family_id == bindparam("id")
)
hmm_query = bakery(lambda s: s.query(dfam.HmmModelDatum.hmm))
hmm_query += lambda q: q.filter(dfam.HmmModelDatum.family_id == bindparam("id"))
sequence_count_query = bakery(lambda s: s.query(dfam.SeedAlignDatum.sequence_count))
sequence_count_query += lambda q: q.filter(
dfam.SeedAlignDatum.family_id == bindparam("id")
)
for record in families_query:
family = famdb.Family()
# REQUIRED FIELDS
family.name = record.name
family.accession = record.accession
family.title = record.title
family.version = record.version
family.consensus = record.consensus
family.length = record.length
# RECOMMENDED FIELDS
family.description = record.description
family.author = record.author
family.date_created = record.date_created
family.date_modified = record.date_modified
family.refineable = record.refineable
family.target_site_cons = record.target_site_cons
family.general_cutoff = record.hmm_general_threshold
if record.classification_id in class_db:
cls = class_db[record.classification_id]
family.classification = cls.full_name()
family.repeat_type = cls.type_name
family.repeat_subtype = cls.subtype_name
# clades and taxonomy links
family.clades = []
for (clade_id,) in clade_query(session).params(id=record.id).all():
family.clades += [clade_id]
# "SearchStages: A,B,C,..."
ss_values = []
for (stage_id,) in search_stage_query(session).params(id=record.id).all():
ss_values += [str(stage_id)]
if ss_values:
family.search_stages = ",".join(ss_values)
# "BufferStages:A,B,C[D-E],..."
bs_values = []
for stage_id, start_pos, end_pos in (
buffer_stage_query(session).params(id=record.id).all()
):
if start_pos == 0 and end_pos == 0:
bs_values += [str(stage_id)]
else:
bs_values += ["{}[{}-{}]".format(stage_id, start_pos, end_pos)]
if bs_values:
family.buffer_stages = ",".join(bs_values)
# Taxa-specific thresholds. "ID, GA, TC, NC, fdr"
th_values = []
for tax_id, spec_ga, spec_tc, spec_nc, spec_fdr in (
assembly_data_query(session).params(id=record.id).all()
):
if record.accession.startswith("DF") and None in (
spec_ga,
spec_tc,
spec_nc,
spec_fdr,
):
raise Exception(
"Found value of None for a threshold value for "
+ record.accession
+ " in tax_id "
+ str(tax_id)
)
th_values += [
"{}, {}, {}, {}, {}".format(tax_id, spec_ga, spec_tc, spec_nc, spec_fdr)
]
if th_values:
family.taxa_thresholds = "\n".join(th_values)
feature_values = []
for feature in feature_query(session).params(id=record.id).all():
obj = {
"type": feature.feature_type,
"description": feature.description,
"model_start_pos": feature.model_start_pos,
"model_end_pos": feature.model_end_pos,
"label": feature.label,
"attributes": [],
}
for attribute in feature_attr_query(session).params(id=feature.id).all():
obj["attributes"] += [
{"attribute": attribute.attribute, "value": attribute.value}
]
feature_values += [obj]
if feature_values:
family.features = json.dumps(feature_values)
cds_values = []
for cds in cds_query(session).params(id=record.id).all():
obj = {
"product": cds.product,
"translation": cds.translation,
"cds_start": cds.cds_start,
"cds_end": cds.cds_end,
"exon_count": cds.exon_count,
"exon_starts": str(cds.exon_starts),
"exon_ends": str(cds.exon_ends),
"external_reference": cds.external_reference,
"reverse": (cds.reverse == 1),
"stop_codons": cds.stop_codons,
"frameshifts": cds.frameshifts,
"gaps": cds.gaps,
"percent_identity": cds.percent_identity,
"left_unaligned": cds.left_unaligned,
"right_unaligned": cds.right_unaligned,
"description": cds.description,
"protein_type": cds.protein_type,
}
cds_values += [obj]
if cds_values:
family.coding_sequences = json.dumps(cds_values)
# External aliases
alias_values = []
for alias in alias_query(session).params(id=record.id).all():
alias_values += ["%s: %s" % (alias.db_id, alias.db_link)]
if alias_values:
family.aliases = "\n".join(alias_values)
citation_values = []
for citation in citation_query(session).params(id=record.id).all():
obj = {
"title": citation.title,
"authors": citation.authors,
"journal": citation.journal,
"order_added": citation.order_added,
}
citation_values += [obj]
if citation_values:
family.citations = json.dumps(citation_values)
# MODEL DATA + METADATA
hmm = hmm_query(session).params(id=record.id).one_or_none()
if hmm:
family.model = gzip.decompress(hmm[0]).decode()
if record.hmm_maxl:
family.max_length = record.hmm_maxl
family.is_model_masked = record.model_mask
seq_count = sequence_count_query(session).params(id=record.id).one_or_none()
if seq_count:
family.seed_count = seq_count[0]
yield family
def read_hmm_families(filename, tax_lookup, nodes):
"""
Iterates over Family objects from the .hmm file 'filename'. The format
should match the output format of to_hmm(), but this is not thoroughly
tested.
'tax_lookup' should be a dictionary of Species names (in the HMM file) to
taxonomy IDs.
"""
def set_family_code(family, code, value):
"""
Sets an attribute on 'family' based on the HMM line starting with 'code'.
For codes corresponding to list attributes, values are appended.
"""
if code == "NAME":
family.name = value
elif code == "ACC":
family.accession = value
elif code == "DESC":
family.description = value
elif code == "LENG":
family.length = int(value)
elif code == "TH":
match = re.match(
r"TaxId:\s*(\d+);(\s*TaxName:\s*.*;)?\s*GA:\s*([\.\d]+);\s*TC:\s*([\.\d]+);\s*NC:\s*([\.\d]+);\s*fdr:\s*([\.\d]+);",
value,
)
if match:
tax_id = int(match.group(1))
tc_value = float(match.group(4))
if family.general_cutoff is None or family.general_cutoff < tc_value:
family.general_cutoff = tc_value
th_values = ", ".join(
[
str(tax_id),
match.group(3),
match.group(4),
match.group(5),
match.group(6),
]
)
if family.taxa_thresholds is None:
family.taxa_thresholds = ""
else:
family.taxa_thresholds += "\n"
family.taxa_thresholds += th_values
else:
LOGGER.warning("Unrecognized format of TH line: <%s>", value)
elif code == "CT":
family.classification = value
elif code == "MS":
match = re.match(r"TaxId:\s*(\d+)", value)
if match:
family.clades += [int(match.group(1))]
else:
LOGGER.warning("Unrecognized format of MS line: <%s>", value)
elif code == "CC":
matches = re.match(r"\s*Type:\s*(\S+)", value)
if matches:
family.repeat_type = matches.group(1).strip()
matches = re.match(r"\s*SubType:\s*(\S+)", value)
if matches:
family.repeat_subtype = matches.group(1).strip()
matches = re.search(r"Species:\s*(.+)", value)
if matches:
for spec in matches.group(1).split(","):
name = spec.strip().lower()
if name:
tax_id = tax_lookup.get(name)
if tax_id:
if tax_id not in family.clades:
LOGGER.warning(
"MS line does not match RepeatMasker Species: line in '%s'!",
name,
)
else:
LOGGER.warning("Could not find taxon for '%s'", name)
matches = re.search(r"SearchStages:\s*(\S+)", value)
if matches:
family.search_stages = matches.group(1).strip()
matches = re.search(r"BufferStages:\s*(\S+)", value)
if matches:
family.buffer_stages = matches.group(1).strip()
matches = re.search("Refineable", value)
if matches:
family.refineable = True
family = None
in_metadata = False
model = None
with open(filename) as file:
for line in file:
if family is None:
# HMMER3/f indicates start of metadata
if line.startswith("HMMER3/f"):
family = famdb.Family()
family.clades = []
in_metadata = True
model = line
else:
if not any(
map(
line.startswith,
["GA", "TC", "NC", "TH", "BM", "SM", "CT", "MS", "CC"],
)
):
model += line
if in_metadata:
# HMM line indicates start of model
if line.startswith("HMM"):
in_metadata = False
# Continuing metadata
else:
code = line[:6].strip()
value = line[6:].rstrip("\n")
set_family_code(family, code, value)
# '//' line indicates end of a model
elif line.startswith("//"):
family.model = model
for clade in family.clades:
if clade in nodes:
LOGGER.info(
f"Including {family.accession} in taxa {clade} from {filename}"
)
yield family
family = None