-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathModelBasedSample_SSA_EK.R
173 lines (127 loc) · 4.98 KB
/
ModelBasedSample_SSA_EK.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
library(spcosa)
library(sp)
library(matrixcalc)
# Annealing functions
source("Functions4SSA.R")
#Read data with coordinates and other attributes of fine grid (discretization of study area)
load(file="HunterValley4Practicals.RData")
grd <- grdHunterValley
coordinates(grd)<- ~Easting+Northing
gridded(grd)<-TRUE
s <- 0.8 #ratio of spatial dependence c1/(c0+c1)
range<-200
thetas <- c(s,range)
## SAMPLING FOR VARIOGRM ESTIMATION USING EITHER LOGDET OR VV AS CRITERION
# Select initial sample
set.seed(314)
n <- 100
ids <- sample.int(nrow(grd),n)
mysample0 <- as(grd[ids,],"SpatialPoints")
# Define sampling grid used for prediction after the second sampling phase
xgrid <- c(0,1,2,3)
ygrid <- xgrid
grid <- expand.grid(xgrid,ygrid)
names(grid) <- c("x","y")
spacing<-300
grid$x <- grid$x*spacing
grid$y <- grid$y*spacing
coordinates(grid) <- ~x+y
# Compute evaluation point
myevalsample <- data.frame(x=mean(grid$x),y=mean(grid$y))
coordinates(myevalsample) <- ~x+y
# Set amount of perturbation of correlogram parameters
perturbation <- 0.01
# For variogram estimation choose one of the following minimization criterions:
# logdet: log of the determinant of inverse of Fisher information matrix
# VV: Variance of kriging Variance, see Eq. 9 in Lark (2002) Geoderma.
annealingResult <- anneal.EK(
free = mysample0,
disc = grd,
fixed = grid,
esample = myevalsample,
model = "Exp",
thetas=thetas,
perturbation=perturbation,
criterion="VV",
# initialTemperature = 0.05, #logdet
initialTemperature = 0.00005, #VV
coolingRate = 0.8,
maxAccepted = 5*nrow(coordinates(mysample0)),
maxPermuted = 5*nrow(coordinates(mysample0)),
maxNoChange = 5,
verbose = "TRUE"
)
save(annealingResult,file="MBSample_VV_phi200nug05_HunterValley.RData")
#load(file="MBSample_logdet_phi200nug02_HunterValley.RData")
load(file="MBSample_VV_phi200nug02_HunterValley.RData")
library(ggplot2)
mysampledf <- data.frame(annealingResult$optSample)
# Plot sample
#pdf(file = "MB_logdet_phi200nug05_HunterValley.pdf", width = 7, height = 7)
ggplot(grdHunterValley) +
geom_raster(mapping = aes(x= Easting, y =Northing),fill="grey")+
geom_point(data = mysampledf, mapping = aes(x= Easting, y =Northing), shape =2,size=1 )+
coord_fixed()
#dev.off()
crit <- annealingResult$Criterion
ggplot() +
geom_line(mapping=aes(x=1:length(crit),y=crit),colour="red")+
scale_x_continuous(name="Chain")+
scale_y_continuous(name="Minimization criterion")
## SAMPLING FOR VARIOGRAM ESTIMATION AND PREDICTION USING EITHER AV OR EAC AS CRITERION
# Select spatial coverage sample for prediction. These locations are fixed, i.e. their locations are not opimized in simulated annealing
# Note that a spatial coverage sample is not strictly needed! The alternative is to to optimize the coordinates of all locations in SSA
# Choose number of locations of spatial coverage sample
n <-90
set.seed(314)
myStrata <- stratify(grd, nStrata = n, equalArea=FALSE, nTry=10)
mySCsample <- as(spsample(myStrata),"SpatialPoints")
# Select initial supplemental sample
nsup <- 10
ids <- sample.int(nrow(grd),nsup)
mysupsample <- as(grd[ids,],"SpatialPoints")
# Select evaluation sample
myevalsample<-spsample(x=grd,n=100,type="regular",offset=c(0.5,0.5))
# Set amount of perturbation of correlogram parameters
perturbation <- 0.01
# Choose one of the following minimization criterions:
# AV: Augmented kriging Variance, see Eq. 5 in Lark and Marchant (2018), Geoderma
# EAC: Estimation Adjusted Criterion, see Eq. 2.16 in Zhu and Stein (2006), JABES
annealingResult <- anneal.EK(
free = mysupsample,
disc = grd,
fixed = mySCsample,
esample = myevalsample,
model = "Exp",
thetas = thetas,
perturbation=perturbation,
criterion="EAC",
# initialTemperature = 0.002, #AV
initialTemperature = 0.005, #EAC
coolingRate = 0.8,
maxAccepted = 5*nrow(coordinates(mysupsample)),
maxPermuted = 5*nrow(coordinates(mysupsample)),
maxNoChange = 5,
verbose = "TRUE"
)
save(annealingResult,file="MBSample_EAC_phi200nug02_HunterValley.RData")
crit <- annealingResult$Criterion
ggplot() +
geom_line(mapping=aes(x=1:length(crit),y=crit),colour="red")+
scale_x_continuous(name="Chain")+
scale_y_continuous(name="Minimization criterion")
# compute distance of supplemental sample to nearest spatial coverage sample point
D <- spDists(mySCsample,annealingResult$optSample)
(Dmin <- apply(D,MARGIN=2,FUN=min))
hist(Dmin)
D <- spDists(annealingResult$optSample)
diag(D) <- 1E1000
(Dmin <- apply(D,MARGIN=2,FUN=min))
library(ggplot2)
mysupsampledf <- data.frame(annealingResult$optSample)
mySCsampledf <- as(mySCsample,"data.frame")
# Plot strata, spatial coverage sample and supplemental sample
plot(myStrata) +
geom_point(data = mySCsampledf, mapping = aes(x= Easting, y =Northing), shape =1,size=1 )+
geom_point(data = mysupsampledf, mapping = aes(x= Easting, y =Northing), shape =2,size=1 )
dev.off()