-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathra_bs.v
46 lines (33 loc) · 2.21 KB
/
ra_bs.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
(**************************************************************)
(* Copyright Dominique Larchey-Wendling [*] *)
(* *)
(* [*] Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import utils recalg.
Set Implicit Arguments.
Reserved Notation " '[' f ';' v ']' '~~>' x " (at level 70).
(* Bigstep semantics for recursive algorithms *)
Inductive ra_bs : forall k, recalg k -> vec nat k -> nat -> Prop :=
| in_ra_bs_cst : forall n v, [ra_cst n; v] ~~> n
| in_ra_bs_zero : forall v, [ra_zero; v] ~~> 0
| in_ra_bs_succ : forall v, [ra_succ; v] ~~> S (vec_head v)
| in_ra_bs_proj : forall k v j, [@ra_proj k j; v] ~~> vec_pos v j
| in_ra_bs_comp : forall k i f (gj : vec (recalg i) k) v w x,
(forall j, [vec_pos gj j; v] ~~> vec_pos w j)
-> [f; w] ~~> x
-> [ra_comp f gj; v] ~~> x
| in_ra_bs_rec_0 : forall k f (g : recalg (S (S k))) v x,
[f; v] ~~> x
-> [ra_rec f g; 0##v] ~~> x
| in_ra_bs_rec_S : forall k f (g : recalg (S (S k))) v n x y,
[ra_rec f g; n##v] ~~> x
-> [g; n##x##v] ~~> y
-> [ra_rec f g; S n##v] ~~> y
| in_ra_bs_min : forall k (f : recalg (S k)) v x w ,
(forall j : pos x, [f; pos2nat j##v] ~~> S (vec_pos w j))
-> [f; x##v] ~~> 0
-> [ra_min f; v] ~~> x
where " [ f ; v ] ~~> x " := (@ra_bs _ f v x).