forked from upphiminn/d3.ForceBundle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathd3-ForceEdgeBundling.js
436 lines (364 loc) · 13.7 KB
/
d3-ForceEdgeBundling.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/*
FDEB algorithm implementation [www.win.tue.nl/~dholten/papers/forcebundles_eurovis.pdf].
Author: Corneliu S. (github.com/upphiminn)
2013
*/
(function(){
d3.ForceEdgeBundling = function(){
var data_nodes = {}, // {'nodeid':{'x':,'y':},..}
data_edges = [], // [{'source':'nodeid1', 'target':'nodeid2'},..]
compatibility_list_for_edge = [],
subdivision_points_for_edge = [],
rejected_edges = [], // list of indices of the edges filtered out by the filter_self_loops
K = 0.1, // global bundling constant controling edge stiffness
S_initial = 0.1, // init. distance to move points
P_initial = 1, // init. subdivision number
P_rate = 2, // subdivision rate increase
C = 6, // number of cycles to perform
I_initial = 90, // init. number of iterations for cycle
I_rate = 0.6666667, // rate at which iteration number decreases i.e. 2/3
compatibility_threshold = 0.6,
invers_quadratic_mode = false,
eps = 1e-6;
/*** Geometry Helper Methods ***/
function vector_dot_product(p, q){
return p.x * q.x + p.y * q.y;
}
function edge_as_vector(P){
return {'x': data_nodes[P.target].x - data_nodes[P.source].x,
'y': data_nodes[P.target].y - data_nodes[P.source].y}
}
function edge_length(e){
// handling nodes that are on the same location, so that K/edge_length != Inf
if (Math.abs(data_nodes[e.source].x-data_nodes[e.target].x) < eps &&
Math.abs(data_nodes[e.source].y-data_nodes[e.target].y) < eps)
return eps;
return Math.sqrt(Math.pow(data_nodes[e.source].x-data_nodes[e.target].x, 2) +
Math.pow(data_nodes[e.source].y-data_nodes[e.target].y, 2));
}
function custom_edge_length(e){
return Math.sqrt(Math.pow(e.source.x - e.target.x, 2) + Math.pow(e.source.y - e.target.y, 2));
}
function edge_midpoint(e){
var middle_x = (data_nodes[e.source].x + data_nodes[e.target].x) / 2.0;
var middle_y = (data_nodes[e.source].y + data_nodes[e.target].y) / 2.0;
return {'x': middle_x, 'y': middle_y};
}
function compute_divided_edge_length(e_idx){
var length = 0;
for(var i = 1; i < subdivision_points_for_edge[e_idx].length; i++){
var segment_length = euclidean_distance(subdivision_points_for_edge[e_idx][i],
subdivision_points_for_edge[e_idx][i-1]);
length += segment_length;
}
return length;
}
function euclidean_distance(p, q){
return Math.sqrt(Math.pow(p.x-q.x, 2) + Math.pow(p.y-q.y, 2));
}
function project_point_on_line(p, Q)
{
var L = Math.sqrt((Q.target.x - Q.source.x) * (Q.target.x - Q.source.x) + (Q.target.y - Q.source.y) * (Q.target.y - Q.source.y));
var r = ((Q.source.y - p.y) * (Q.source.y - Q.target.y) - (Q.source.x - p.x) * (Q.target.x - Q.source.x)) / (L * L);
return {'x':(Q.source.x + r * (Q.target.x - Q.source.x)), 'y':(Q.source.y + r * (Q.target.y - Q.source.y))};
}
/*** ********************** ***/
/*** Initialization Methods ***/
function initialize_edge_subdivisions()
{
for(var i = 0; i < data_edges.length; i++)
if(P_initial == 1)
subdivision_points_for_edge[i] = []; //0 subdivisions
else{
subdivision_points_for_edge[i] = [];
subdivision_points_for_edge[i].push(data_nodes[data_edges[i].source]);
subdivision_points_for_edge[i].push(data_nodes[data_edges[i].target]);
}
}
function initialize_compatibility_lists()
{
for(var i = 0; i < data_edges.length; i++)
compatibility_list_for_edge[i] = []; //0 compatible edges.
}
function filter_self_loops(edgelist){
var filtered_edge_list = [];
for(var e=0; e < edgelist.length; e++){
if(data_nodes[edgelist[e].source].x != data_nodes[edgelist[e].target].x ||
data_nodes[edgelist[e].source].y != data_nodes[edgelist[e].target].y ){ //or smaller than eps
filtered_edge_list.push(edgelist[e]);
} else {
rejected_edges.push(e);
}
}
return filtered_edge_list;
}
/*** ********************** ***/
/*** Force Calculation Methods ***/
function apply_spring_force(e_idx, i, kP){
var prev = subdivision_points_for_edge[e_idx][i-1];
var next = subdivision_points_for_edge[e_idx][i+1];
var crnt = subdivision_points_for_edge[e_idx][i];
var x = prev.x - crnt.x + next.x - crnt.x;
var y = prev.y - crnt.y + next.y - crnt.y;
x *= kP;
y *= kP;
return {'x' : x, 'y' : y};
}
function apply_electrostatic_force(e_idx, i , S){
var sum_of_forces = { 'x' : 0, 'y' : 0};
var compatible_edges_list = compatibility_list_for_edge[e_idx];
window.sbd = subdivision_points_for_edge;
for(var oe = 0; oe < compatible_edges_list.length; oe++){
var force = {'x': subdivision_points_for_edge[compatible_edges_list[oe]][i].x - subdivision_points_for_edge[e_idx][i].x,
'y': subdivision_points_for_edge[compatible_edges_list[oe]][i].y - subdivision_points_for_edge[e_idx][i].y};
if((Math.abs(force.x) > eps)||(Math.abs(force.y) > eps)){
var diff = ( 1 / Math.pow(custom_edge_length({'source':subdivision_points_for_edge[compatible_edges_list[oe]][i],
'target':subdivision_points_for_edge[e_idx][i]}),1));
sum_of_forces.x += force.x*diff;
sum_of_forces.y += force.y*diff;
}
}
return sum_of_forces;
}
function apply_resulting_forces_on_subdivision_points(e_idx, P, S){
var kP = K/(edge_length(data_edges[e_idx])*(P+1)); // kP=K/|P|(number of segments), where |P| is the initial length of edge P.
// (length * (num of sub division pts - 1))
var resulting_forces_for_subdivision_points = [{'x':0, 'y':0}];
for(var i = 1; i < P+1; i++){ // exclude initial end points of the edge 0 and P+1
var resulting_force = {'x' : 0, 'y' : 0};
spring_force = apply_spring_force(e_idx, i , kP);
electrostatic_force = apply_electrostatic_force(e_idx, i, S);
resulting_force.x = S*(spring_force.x + electrostatic_force.x);
resulting_force.y = S*(spring_force.y + electrostatic_force.y);
resulting_forces_for_subdivision_points.push(resulting_force);
}
resulting_forces_for_subdivision_points.push({'x':0, 'y':0});
return resulting_forces_for_subdivision_points;
}
/*** ********************** ***/
/*** Edge Division Calculation Methods ***/
function update_edge_divisions(P){
for(var e_idx=0; e_idx < data_edges.length; e_idx++){
if( P == 1 ){
subdivision_points_for_edge[e_idx].push(data_nodes[data_edges[e_idx].source]); // source
subdivision_points_for_edge[e_idx].push(edge_midpoint(data_edges[e_idx])); // mid point
subdivision_points_for_edge[e_idx].push(data_nodes[data_edges[e_idx].target]); // target
}else{
var divided_edge_length = compute_divided_edge_length(e_idx);
var segment_length = divided_edge_length / (P+1);
var current_segment_length = segment_length;
var new_subdivision_points = [];
new_subdivision_points.push(data_nodes[data_edges[e_idx].source]); //source
for(var i = 1; i < subdivision_points_for_edge[e_idx].length; i++){
var old_segment_length = euclidean_distance(subdivision_points_for_edge[e_idx][i], subdivision_points_for_edge[e_idx][i-1]);
while(old_segment_length > current_segment_length){
var percent_position = current_segment_length / old_segment_length;
var new_subdivision_point_x = subdivision_points_for_edge[e_idx][i-1].x;
var new_subdivision_point_y = subdivision_points_for_edge[e_idx][i-1].y;
new_subdivision_point_x += percent_position*(subdivision_points_for_edge[e_idx][i].x - subdivision_points_for_edge[e_idx][i-1].x);
new_subdivision_point_y += percent_position*(subdivision_points_for_edge[e_idx][i].y - subdivision_points_for_edge[e_idx][i-1].y);
new_subdivision_points.push( {'x':new_subdivision_point_x,
'y':new_subdivision_point_y });
old_segment_length -= current_segment_length;
current_segment_length = segment_length;
}
current_segment_length -= old_segment_length;
}
new_subdivision_points.push(data_nodes[data_edges[e_idx].target]); //target
subdivision_points_for_edge[e_idx] = new_subdivision_points;
}
}
}
/*** ********************** ***/
/*** Edge compatibility measures ***/
function angle_compatibility(P, Q){
var result = Math.abs(vector_dot_product(edge_as_vector(P),edge_as_vector(Q))/(edge_length(P)*edge_length(Q)));
return result;
}
function scale_compatibility(P, Q){
var lavg = (edge_length(P) + edge_length(Q))/2.0;
var result = 2.0/(lavg/Math.min(edge_length(P),edge_length(Q)) + Math.max(edge_length(P), edge_length(Q))/lavg);
return result;
}
function position_compatibility(P, Q){
var lavg = (edge_length(P) + edge_length(Q))/2.0;
var midP = {'x':(data_nodes[P.source].x + data_nodes[P.target].x)/2.0,
'y':(data_nodes[P.source].y + data_nodes[P.target].y)/2.0};
var midQ = {'x':(data_nodes[Q.source].x + data_nodes[Q.target].x)/2.0,
'y':(data_nodes[Q.source].y + data_nodes[Q.target].y)/2.0};
var result = lavg/(lavg + euclidean_distance(midP, midQ));
return result;
}
function edge_visibility(P, Q){
var I0 = project_point_on_line(data_nodes[Q.source], {'source':data_nodes[P.source],
'target':data_nodes[P.target]});
var I1 = project_point_on_line(data_nodes[Q.target], {'source':data_nodes[P.source],
'target':data_nodes[P.target]}); //send acutal edge points positions
var midI = {'x':(I0.x + I1.x)/2.0,
'y':(I0.y + I1.y)/2.0};
var midP = {'x':(data_nodes[P.source].x + data_nodes[P.target].x)/2.0,
'y':(data_nodes[P.source].y + data_nodes[P.target].y)/2.0};
var result = Math.max(0, 1 - 2 * euclidean_distance(midP,midI)/euclidean_distance(I0,I1));
return result;
}
function visibility_compatibility(P, Q){
return Math.min(edge_visibility(P,Q), edge_visibility(Q,P));
}
function compatibility_score(P, Q){
var result = (angle_compatibility(P,Q) * scale_compatibility(P,Q) *
position_compatibility(P,Q) * visibility_compatibility(P,Q));
return result;
}
function are_compatible(P, Q){
//console.log('compatibility ' + P.source +' - '+ P.target + ' and ' + Q.source +' '+ Q.target);
return (compatibility_score(P,Q) >= compatibility_threshold);
}
function compute_compatibility_lists()
{
for(e = 0; e < data_edges.length - 1; e++){
for( oe = e + 1 ; oe < data_edges.length; oe++){ // don't want any duplicates
if(e == oe)
continue;
else{
if(are_compatible(data_edges[e],data_edges[oe])){
compatibility_list_for_edge[e].push(oe);
compatibility_list_for_edge[oe].push(e);
}
}
}
}
}
/*** ************************ ***/
/*** Main Bundling Loop Methods ***/
var forcebundle = function(){
var S = S_initial;
var I = I_initial;
var P = P_initial;
initialize_edge_subdivisions();
initialize_compatibility_lists();
update_edge_divisions(P);
compute_compatibility_lists();
for(var cycle=0; cycle < C; cycle++){
for (var iteration = 0; iteration < I; iteration++){
var forces = [];
for(var edge = 0; edge < data_edges.length; edge++){
forces[edge] = apply_resulting_forces_on_subdivision_points(edge, P, S);
}
for(var e = 0; e < data_edges.length; e++){
for(var i=0; i < P + 1;i++){
subdivision_points_for_edge[e][i].x += forces[e][i].x;
subdivision_points_for_edge[e][i].y += forces[e][i].y;
}
}
}
//prepare for next cycle
S = S / 2;
P = P * P_rate;
I = I_rate * I;
update_edge_divisions(P);
console.log('C' + cycle);
console.log('P' + P);
console.log('S' + S);
}
// Add rejected edges as undefined values at the same positions as in original data
rejected_edges.forEach(function(index) {
subdivision_points_for_edge.splice(index, 0, undefined);
});
return subdivision_points_for_edge;
}
/*** ************************ ***/
/*** Getters/Setters Methods ***/
forcebundle.nodes = function(nl){
if(arguments.length == 0){
return data_nodes;
}
else{
data_nodes = nl;
}
return forcebundle;
}
forcebundle.edges = function(ll){
if(arguments.length == 0){
return data_edges;
}
else{
data_edges = filter_self_loops(ll); //remove edges to from to the same point
}
return forcebundle;
}
forcebundle.bundling_stiffness = function(k){
if(arguments.length == 0){
return K;
}
else{
K = k;
}
return forcebundle;
}
forcebundle.step_size = function(step){
if(arguments.length == 0){
return S_initial;
}
else{
S_initial = step;
}
return forcebundle;
}
forcebundle.cycles = function(c){
if(arguments.length == 0){
return C;
}
else{
C = c;
}
return forcebundle;
}
forcebundle.iterations = function(i){
if(arguments.length == 0){
return I_initial;
}
else{
I_initial = i;
}
return forcebundle;
}
forcebundle.iterations_rate = function(i){
if(arguments.length == 0){
return I_rate;
}
else{
I_rate = i;
}
return forcebundle;
}
forcebundle.subdivision_points_seed = function(p){
if(arguments.length == 0){
return P;
}
else{
P = p;
}
return forcebundle;
}
forcebundle.subdivision_rate = function(r){
if(arguments.length == 0){
return P_rate;
}
else{
P_rate = r;
}
return forcebundle;
}
forcebundle.compatibility_threshold = function(t){
if(arguments.length == 0){
return compatibility_threshold;
}
else{
compatibility_threshold = t;
}
return forcebundle;
}
/*** ************************ ***/
return forcebundle;
}
})();