-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathAttentionBlockConditional.py
155 lines (114 loc) · 6.2 KB
/
AttentionBlockConditional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# -*- coding: utf-8 -*-
from utils import *
class MLPConditional(nn.Module) :
def __init__(self, D):
super(MLPConditional, self).__init__()
self.fc1 = nn.Linear(D,D)
self.fc2 = nn.Linear(D,D)
self.relu = nn.ReLU()
def forward(self, x, conv1_context_h, conv2_context_h):
h = self.relu(self.fc2(self.fc1(x)))
y = conv1_context_h * h + conv2_context_h
return y
class AttentionBlockConditional(nn.Module) :
def __init__(self, t, D):
"""
=INPUT=
t : Type de Block (row/col)
: String
D : dimension embedding
"""
super(AttentionBlockConditional, self).__init__()
self.D = D
self.Type = t
# head 1
self.Q1 = nn.Linear(D,D,bias=False)
self.K1 = nn.Linear(D,D,bias=False)
self.V1 = nn.Linear(D,D,bias=False)
# head 2
self.Q2 = nn.Linear(D,D,bias=False)
self.K2 = nn.Linear(D,D,bias=False)
self.V2 = nn.Linear(D,D,bias=False)
# head 3
self.Q3 = nn.Linear(D,D,bias=False)
self.K3 = nn.Linear(D,D,bias=False)
self.V3 = nn.Linear(D,D,bias=False)
# head 4
self.Q4 = nn.Linear(D,D,bias=False)
self.K4 = nn.Linear(D,D,bias=False)
self.V4 = nn.Linear(D,D,bias=False)
# linear
self.out = nn.Linear(4*D,D)
self.conv1_z = nn.Conv2d(D,D,kernel_size=1,bias=False)
self.conv2_z = nn.Conv2d(D,D,kernel_size=1,bias=False)
self.conv1_h = nn.Conv2d(D,D,kernel_size=1,bias=False)
self.conv2_h = nn.Conv2d(D,D,kernel_size=1,bias=False)
self.LN = nn.LayerNorm(D)
self.mean_avg_pool = nn.AvgPool1d(kernel_size=1)
self.mlp = MLPConditional(D)
def forward(self, input, context, mask = None):
conv1_context_z = self.conv1_z(context.transpose(1,-1)).transpose(1,-1)
conv2_context_z = self.conv2_z(context.transpose(1,-1)).transpose(1,-1)
conv1_context_h = self.conv1_h(context.transpose(1,-1)).transpose(1,-1)
conv2_context_h = self.conv2_h(context.transpose(1,-1)).transpose(1,-1)
batch, row, col, _ = input.shape
out = torch.empty_like(input)
s = nn.Softmax(-1)
if self.Type == 'row' :
for i in range(row) :
ln_input = self.LN(input[:,i,:,:])
maski = 1 if mask is None else mask[:,i,:].unsqueeze(-1) @ torch.ones(1, col)
Q1c = self.Q1(ln_input) * conv1_context_z[:,i,:,:] + conv2_context_z[:,i,:,:]
K1c = self.K1(ln_input) * conv1_context_z[:,i,:,:] + conv2_context_z[:,i,:,:]
V1c = self.V1(ln_input) * conv1_context_z[:,i,:,:] + conv2_context_z[:,i,:,:]
Q2c = self.Q2(ln_input) * conv1_context_z[:,i,:,:] + conv2_context_z[:,i,:,:]
K2c = self.K2(ln_input) * conv1_context_z[:,i,:,:] + conv2_context_z[:,i,:,:]
V2c = self.V2(ln_input) * conv1_context_z[:,i,:,:] + conv2_context_z[:,i,:,:]
Q3c = self.Q3(ln_input) * conv1_context_z[:,i,:,:] + conv2_context_z[:,i,:,:]
K3c = self.K3(ln_input) * conv1_context_z[:,i,:,:] + conv2_context_z[:,i,:,:]
V3c = self.V3(ln_input) * conv1_context_z[:,i,:,:] + conv2_context_z[:,i,:,:]
Q4c = self.Q4(ln_input) * conv1_context_z[:,i,:,:] + conv2_context_z[:,i,:,:]
K4c = self.K4(ln_input) * conv1_context_z[:,i,:,:] + conv2_context_z[:,i,:,:]
V4c = self.V4(ln_input) * conv1_context_z[:,i,:,:] + conv2_context_z[:,i,:,:]
A1 = s(torch.matmul(Q1c, K1c.transpose(1,2)) * maski / math.sqrt(self.D))
A2 = s(torch.matmul(Q2c, K2c.transpose(1,2)) * maski / math.sqrt(self.D))
A3 = s(torch.matmul(Q3c, K3c.transpose(1,2)) * maski / math.sqrt(self.D))
A4 = s(torch.matmul(Q4c, K4c.transpose(1,2)) * maski / math.sqrt(self.D))
# W * W
SA1 = torch.matmul(A1,V1c)
SA2 = torch.matmul(A2,V2c)
SA3 = torch.matmul(A3,V3c)
SA4 = torch.matmul(A4,V4c)
MSA = self.out(torch.cat((SA1,SA2,SA3,SA4),2))
tmp = MSA + input[:,i,:,:]
out[:,i,:,:] = self.mlp(self.LN(tmp), conv1_context_h[:,i,:,:], conv2_context_h[:,i,:,:]) + tmp # W * D
# ColumnAttention
else :
for j in range(col) :
ln_input = self.LN(input[:,:,j,:])
maskj = 1 if mask is None else mask[:,:,j].unsqueeze(-1) @ torch.ones(1, row)
Q1c = self.Q1(ln_input) * conv1_context_z[:,:,j,:] + conv2_context_z[:,:,j,:]
K1c = self.K1(ln_input) * conv1_context_z[:,:,j,:] + conv2_context_z[:,:,j,:]
V1c = self.V1(ln_input) * conv1_context_z[:,:,j,:] + conv2_context_z[:,:,j,:]
Q2c = self.Q2(ln_input) * conv1_context_z[:,:,j,:] + conv2_context_z[:,:,j,:]
K2c = self.K2(ln_input) * conv1_context_z[:,:,j,:] + conv2_context_z[:,:,j,:]
V2c = self.V2(ln_input) * conv1_context_z[:,:,j,:] + conv2_context_z[:,:,j,:]
Q3c = self.Q3(ln_input) * conv1_context_z[:,:,j,:] + conv2_context_z[:,:,j,:]
K3c = self.K3(ln_input) * conv1_context_z[:,:,j,:] + conv2_context_z[:,:,j,:]
V3c = self.V3(ln_input) * conv1_context_z[:,:,j,:] + conv2_context_z[:,:,j,:]
Q4c = self.Q4(ln_input) * conv1_context_z[:,:,j,:] + conv2_context_z[:,:,j,:]
K4c = self.K4(ln_input) * conv1_context_z[:,:,j,:] + conv2_context_z[:,:,j,:]
V4c = self.V4(ln_input) * conv1_context_z[:,:,j,:] + conv2_context_z[:,:,j,:]
A1 = s(torch.matmul(Q1c, K1c.transpose(1,2)) * maskj / math.sqrt(self.D))
A2 = s(torch.matmul(Q2c, K2c.transpose(1,2)) * maskj / math.sqrt(self.D))
A3 = s(torch.matmul(Q3c, K3c.transpose(1,2)) * maskj / math.sqrt(self.D))
A4 = s(torch.matmul(Q4c, K4c.transpose(1,2)) * maskj / math.sqrt(self.D))
# W * W
SA1 = torch.matmul(A1,V1c)
SA2 = torch.matmul(A2,V2c)
SA3 = torch.matmul(A3,V3c)
SA4 = torch.matmul(A4,V4c)
MSA = self.out(torch.cat((SA1,SA2,SA3,SA4),2))
tmp = MSA + input[:,:,j,:]
out[:,:,j,:] = self.mlp(self.LN(tmp),conv1_context_h[:,:,j,:], conv2_context_h[:,:,j,:]) + tmp # W * D
return out