-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_bfgs.m
107 lines (92 loc) · 6.1 KB
/
main_bfgs.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
clear;
dataset = {'SBU_3DFE','SJAFFE','Yeast_spo5','Yeast_spo','Yeast_heat','Yeast_elu','Yeast_dtt','Yeast_diau','Yeast_cold','Yeast_cdc','Yeast_alpha','Flickr','Twitter','Human_Gene','Natural_Scene'};
for i = 1:length(dataset)
parm{i}.lambda1 = 1e-3;
parm{i}.lambda2 = 0;
parm{i}.method = 0;
MaxIter{i} = 400;
Ratio{i} = 0.8;
LowerBound{i} = 1;
end
parm{1}.lambda1 = 1e-4;
parm{1}.lambda2 = 0;
parm{1}.method = 1;
MaxIter{1} = 500;
parm{2}.lambda1 = 4e-3;
parm{2}.lambda2 = 2e-5;
parm{2}.method = 0;
MaxIter{2} = 250;
MaxIter{13}=200;
MaxIter{14}=200;
parm{15}.method = 1;
nFold = 10;
indicatorName = {'Acc','KlDistance','EuclideanDistance','MSE','Chebyshev','Clark','Canberra','Cosine','Intersection','sortLoss','kurtosisKl','laLoss','SignedKurtosisOffset','AbsKurtosisOffset'};
algorithmName = {'bfgs','kqa','psk','pskKqa','pskOneHotKqa'};
for datasetNum = 2
datasetName = dataset{datasetNum};
load( datasetName+".mat");
[trainFeatures,trainLabels,testFeatures,testLabels] = crossValidation(features,labels,nFold,false,true);
algorithmName2 = cell(length(algorithmName),1);
algorithmName3 = cell(2*length(algorithmName),1);
for i = 1:length(algorithmName)
algorithmName2{i} = strcat(upper(algorithmName{i}(1)),algorithmName{i}(2:end)); %#ok<*SAGROW>
algorithmName3{2*i-1} = strcat(algorithmName{i},'Train');
algorithmName3{2*i} = strcat(algorithmName{i},'Test');
end
for i = 1:length(algorithmName)
eval([algorithmName{i},'Test = table;']);
eval([algorithmName{i},'Train = table;']);
end
parfor i = 1:nFold
[bfgsResultTest,bfgsResultTrain] = ldlBfgs(trainFeatures{i},trainLabels{i},testFeatures{i},testLabels{i},MaxIter{datasetNum}); %#ok<*PFBNS>
[pskResultTest,pskResultTrain] = ldlPsk(trainFeatures{i},trainLabels{i},testFeatures{i},testLabels{i},false,Ratio{datasetNum},LowerBound{datasetNum},MaxIter{datasetNum});
[kqaResultTest,kqaResultTrain] = ldlKqa(trainFeatures{i},trainLabels{i},testFeatures{i},testLabels{i},parm{datasetNum},MaxIter{datasetNum});
[pskKqaResultTest,pskKqaResultTrain] = ldlKqa(trainFeatures{i},trainLabels{i},testFeatures{i},testLabels{i},parm{datasetNum},MaxIter{datasetNum},true,false);
[pskOneHotKqaResultTest,pskOneHotKqaResultTrain] = ldlKqa(trainFeatures{i},trainLabels{i},testFeatures{i},testLabels{i},parm{datasetNum},MaxIter{datasetNum},true,true);
bfgsTest = [bfgsTest;bfgsResultTest]; %#ok<*AGROW>
bfgsTrain = [bfgsTrain;bfgsResultTrain];
kqaTest = [kqaTest;kqaResultTest];
kqaTrain = [kqaTrain;kqaResultTrain];
pskTest = [pskTest;pskResultTest];
pskTrain = [pskTrain;pskResultTrain];
pskKqaTest = [pskKqaTest;pskKqaResultTest];
pskKqaTrain = [pskKqaTrain;pskKqaResultTrain];
pskOneHotKqaTest = [pskOneHotKqaTest;pskOneHotKqaResultTest];
pskOneHotKqaTrain = [pskOneHotKqaTrain;pskOneHotKqaResultTrain];
end
meanTest=[];
meanTrain=[];
meanAll=[];
stdTest=[];
stdTrain=[];
stdAll=[];
for i = 1:length(algorithmName)
eval(['mean',algorithmName2{i},'Test = mean(',algorithmName{i},'Test{:,:},1);']);
eval(['mean',algorithmName2{i},'Train = mean(',algorithmName{i},'Train{:,:},1);']);
eval(['std',algorithmName2{i},'Test = std(',algorithmName{i},'Test{:,:},1);']);
eval(['std',algorithmName2{i},'Train = std(',algorithmName{i},'Train{:,:},1);']);
eval(['meanTest =[meanTest;mean',algorithmName2{i},'Test];']);
eval(['meanTrain = [meanTrain;mean',algorithmName2{i},'Train];']);
eval(['meanAll = [meanAll;mean',algorithmName2{i},'Train;mean',algorithmName2{i},'Test];']);
eval(['stdTest =[stdTest;std',algorithmName2{i},'Test];']);
eval(['stdTrain = [stdTrain;std',algorithmName2{i},'Train];']);
eval(['stdAll = [stdAll;std',algorithmName2{i},'Train;std',algorithmName2{i},'Test];']);
end
compareMeanTest = array2table(meanTest,'RowNames',algorithmName,'VariableNames',indicatorName);
compareStdTest = array2table(stdTest,'RowNames',algorithmName,'VariableNames',indicatorName);
compareMeanTrain = array2table(meanTrain,'RowNames',algorithmName,'VariableNames',indicatorName);
compareStdTrain = array2table(stdTrain,'RowNames',algorithmName,'VariableNames',indicatorName);
compareMeanAll = array2table(meanAll,'RowNames',algorithmName3,'VariableNames',indicatorName);
compareStdAll = array2table(stdAll,'RowNames',algorithmName3,'VariableNames',indicatorName);
% compareMeanTest = array2table([meanBfgsTest;meanKqaTest],'RowNames',{'bfgs','kqa'},'VariableNames',{'meanKlDistance','meanEuclideanDistance','meanMSE','bfgsMeanKurtosisDif','meanChebyshev','meanClark','meanCanberra','meanCosine','meanIntersection','meanNDCG','meanSortLoss','meanKurtosisKL'});
% compareStdTest = array2table([stdBfgsTest;stdKqaTest],'RowNames',{'bfgs','kqa'},'VariableNames',{'stdKlDistance','stdEuclideanDistance','stdMSE','stdKurtosisDif','stdChebyshev','stdClark','stdCanberra','stdCosine','stdIntersection','stdNDCG','stdSortLoss','stdKurtosisKL'});
% compareMeanAll = array2table([meanBfgsTrain;meanBfgsTest;meanKqaTrain;meanKqaTest],'RowNames',{'bfgsTrain','bfgsTest','kqaTrain','kqaTest'},'VariableNames',{'meanKlDistance','meanEuclideanDistance','meanMSE','meanKurtosisDif','meanChebyshev','meanClark','meanCanberra','meanCosine','meanIntersection','meanNDCG','meanSortLoss','meanKurtosisKL'});
% compareStdAll = array2table([stdBfgsTrain;stdBfgsTest;stdKqaTrain;stdKqaTest],'RowNames',{'bfgsTrain','bfgsTest','kqaTrain','kqaTest'},'VariableNames',{'stdKlDistance','stdEuclideanDistance','stdMSE','stdKurtosisDif','stdChebyshev','stdClark','stdCanberra','stdCosine','stdIntersection','stdNDCG','stdSortLoss','stdKurtosisKL'});
% ±£´æ½á¹û
cd('DataResult');
cd('DataResult_UAI21');
eval(['save ',datasetName,'_3_21_1.mat datasetName compareMeanAll compareMeanTest compareMeanTrain compareStdAll compareStdTest compareStdTrain']);
cd('..');
cd('..');
clear stdKnnTest stdKnnTrain stdBfgsTest stdBfgsTrain stdLcTest stdLcTrain stdAdaboostBfgsTest stdAdaboostLcTest S'%'1;
end