-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_classifier.py
67 lines (51 loc) · 2.13 KB
/
main_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#!/usr/bin/env python
# encoding: utf-8
'''
@project : diverse_sampling
@file : main.py
@author : levon
@contact : [email protected]
@ide : PyCharm
@time : 2022-07-11 22:59
'''
# ****************************************************************************************************************
# *********************************************** Environments ***************************************************
# ****************************************************************************************************************
import numpy as np
import random
import torch
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def seed_torch(seed=3450):
# random.seed(seed)
# os.environ['PYTHONHASHSEED'] = str(seed)
# np.random.seed(seed)
# torch.manual_seed(seed)
# torch.cuda.manual_seed(seed)
# torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = True
seed_torch()
# ****************************************************************************************************************
# *********************************************** Main ***********************************************************
# ****************************************************************************************************************
import argparse
import pandas as pd
from pprint import pprint
from fid_acc import Evaluate_FID_ACC_H36m
from fid_acc import Evaluate_FID_ACC_Humaneva
parser = argparse.ArgumentParser(description='manual to this script')
parser.add_argument('--exp_name', type=str, default="h36m_t2", help="h36m_t2 / humaneva_t2")
args = parser.parse_args()
if args.exp_name == "h36m_t2":
r = Evaluate_FID_ACC_H36m()
r.restore(os.path.join("./ckpt/pretrained", "h36m_t2.pth"))
elif args.exp_name == "humaneva_t2":
r = Evaluate_FID_ACC_Humaneva()
r.restore(os.path.join("./ckpt/pretrained", "humaneva_t2.pth"))
else:
print("wrong exp_name!")
fid, acc = r.compute_fid_and_acc()
print("\n Test --> fid {:.4f} -- acc {:.4f}".format(fid, acc))