-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathReinforceNormal.lua
124 lines (111 loc) · 3.94 KB
/
ReinforceNormal.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
------------------------------------------------------------------------
--[[ ReinforceNormal ]]--
-- Ref A. http://incompleteideas.net/sutton/williams-92.pdf
-- Inputs are mean (mu) of multivariate normal distribution.
-- Ouputs are samples drawn from these distributions.
-- Standard deviation is provided as constructor argument.
-- Uses the REINFORCE algorithm (ref. A sec 6. p.237-239) which is
-- implemented through the nn.Module:reinforce(r,b) interface.
-- gradOutputs are ignored (REINFORCE algorithm).
------------------------------------------------------------------------
local ReinforceNormal, parent = torch.class("nn.ReinforceNormal", "nn.Reinforce")
function ReinforceNormal:__init(stdev, stochastic)
parent.__init(self, stochastic)
self.stdev = stdev
if not stdev then
self.gradInput = {torch.Tensor(), torch.Tensor()}
end
end
function ReinforceNormal:updateOutput(input)
local mean, stdev = input, self.stdev
if torch.type(input) == 'table' then
-- input is {mean, stdev}
assert(#input == 2)
mean, stdev = unpack(input)
end
assert(stdev)
self.output:resizeAs(mean)
if self.stochastic or self.train ~= false then
self.output:normal()
-- multiply by standard deviations
if torch.type(stdev) == 'number' then
self.output:mul(stdev)
elseif torch.isTensor(stdev) then
if stdev:dim() == mean:dim() then
assert(stdev:isSameSizeAs(mean))
self.output:cmul(stdev)
else
assert(stdev:dim()+1 == mean:dim())
self._stdev = self._stdev or stdev.new()
self._stdev:view(stdev,1,table.unpack(stdev:size():totable()))
self.__stdev = self.__stdev or stdev.new()
self.__stdev:expandAs(self._stdev, mean)
self.output:cmul(self.__stdev)
end
else
error"unsupported mean type"
end
-- re-center the means to the mean
self.output:add(mean)
else
-- use maximum a posteriori (MAP) estimate
self.output:copy(mean)
end
return self.output
end
function ReinforceNormal:updateGradInput(input, gradOutput)
-- Note that gradOutput is ignored
-- f : normal probability density function
-- x : the sampled values (self.output)
-- u : mean (mu) (mean)
-- s : standard deviation (sigma) (stdev)
local mean, stdev = input, self.stdev
local gradMean, gradStdev = self.gradInput, nil
if torch.type(input) == 'table' then
mean, stdev = unpack(input)
gradMean, gradStdev = unpack(self.gradInput)
end
assert(stdev)
-- Derivative of log normal w.r.t. mean :
-- d ln(f(x,u,s)) (x - u)
-- -------------- = -------
-- d u s^2
gradMean:resizeAs(mean)
-- (x - u)
gradMean:copy(self.output):add(-1, mean)
-- divide by squared standard deviations
if torch.type(stdev) == 'number' then
gradMean:div(stdev^2)
else
if stdev:dim() == mean:dim() then
gradMean:cdiv(stdev):cdiv(stdev)
else
gradMean:cdiv(self.__stdev):cdiv(self.__stdev)
end
end
-- multiply by reward
gradMean:cmul(self:rewardAs(mean) )
-- multiply by -1 ( gradient descent on mean )
gradMean:mul(-1)
-- Derivative of log normal w.r.t. stdev :
-- d ln(f(x,u,s)) (x - u)^2 - s^2
-- -------------- = ---------------
-- d s s^3
if gradStdev then
gradStdev:resizeAs(stdev)
-- (x - u)^2
gradStdev:copy(self.output):add(-1, mean):pow(2)
-- subtract s^2
self._stdev2 = self._stdev2 or stdev.new()
self._stdev2:resizeAs(stdev):copy(stdev):cmul(stdev)
gradStdev:add(-1, self._stdev2)
-- divide by s^3
self._stdev2:cmul(stdev):add(0.00000001)
gradStdev:cdiv(self._stdev2)
-- multiply by reward
gradStdev:cmul(self:rewardAs(stdev))
-- multiply by -1 ( gradient descent on stdev )
gradStdev:mul(-1)
end
return self.gradInput
end