forked from yusuketomoto/chainer-fast-neuralstyle
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
executable file
·154 lines (130 loc) · 6.03 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from __future__ import print_function, division
import numpy as np
import os, re
import argparse
from PIL import Image
from chainer import cuda, Variable, optimizers, serializers
from net import *
def load_image(path, size):
image = Image.open(path).convert('RGB')
w,h = image.size
if w < h:
if w < size:
image = image.resize((size, size*h//w))
w, h = image.size
else:
if h < size:
image = image.resize((size*w//h, size))
w, h = image.size
image = image.crop(((w-size)*0.5, (h-size)*0.5, (w+size)*0.5, (h+size)*0.5))
return xp.asarray(image, dtype=np.float32).transpose(2, 0, 1)
def gram_matrix(y):
b, ch, h, w = y.data.shape
features = F.reshape(y, (b, ch, w*h))
gram = F.batch_matmul(features, features, transb=True)/np.float32(ch*w*h)
return gram
def total_variation(x):
xp = cuda.get_array_module(x.data)
b, ch, h, w = x.data.shape
wh = Variable(xp.asarray([[[[1], [-1]], [[0], [0]], [[0], [0]]], [[[0], [0]], [[1], [-1]], [[0], [0]]], [[[0], [0]], [[0], [0]], [[1], [-1]]]], dtype=np.float32), volatile=x.volatile)
ww = Variable(xp.asarray([[[[1, -1]], [[0, 0]], [[0, 0]]], [[[0, 0]], [[1, -1]], [[0, 0]]], [[[0, 0]], [[0, 0]], [[1, -1]]]], dtype=np.float32), volatile=x.volatile)
return F.sum(F.convolution_2d(x, W=wh) ** 2) + F.sum(F.convolution_2d(x, W=ww) ** 2)
parser = argparse.ArgumentParser(description='Real-time style transfer')
parser.add_argument('--gpu', '-g', default=-1, type=int,
help='GPU ID (negative value indicates CPU)')
parser.add_argument('--dataset', '-d', default='dataset', type=str,
help='dataset directory path (according to the paper, use MSCOCO 80k images)')
parser.add_argument('--style_image', '-s', type=str, required=True,
help='style image path')
parser.add_argument('--batchsize', '-b', type=int, default=1,
help='batch size (default value is 1)')
parser.add_argument('--initmodel', '-i', default=None, type=str,
help='initialize the model from given file')
parser.add_argument('--resume', '-r', default=None, type=str,
help='resume the optimization from snapshot')
parser.add_argument('--output', '-o', default=None, type=str,
help='output model file path without extension')
parser.add_argument('--lambda_tv', default=1e-6, type=float,
help='weight of total variation regularization according to the paper to be set between 10e-4 and 10e-6.')
parser.add_argument('--lambda_feat', default=1.0, type=float)
parser.add_argument('--lambda_style', default=5.0, type=float)
parser.add_argument('--epoch', '-e', default=2, type=int)
parser.add_argument('--lr', '-l', default=1e-3, type=float)
parser.add_argument('--checkpoint', '-c', default=0, type=int)
parser.add_argument('--image_size', default=256, type=int)
args = parser.parse_args()
batchsize = args.batchsize
image_size = args.image_size
n_epoch = args.epoch
lambda_tv = args.lambda_tv
lambda_f = args.lambda_feat
lambda_s = args.lambda_style
style_prefix, _ = os.path.splitext(os.path.basename(args.style_image))
output = style_prefix if args.output == None else args.output
fs = os.listdir(args.dataset)
imagepaths = []
for fn in fs:
base, ext = os.path.splitext(fn)
if ext == '.jpg' or ext == '.png':
imagepath = os.path.join(args.dataset,fn)
imagepaths.append(imagepath)
n_data = len(imagepaths)
print('num traning images:', n_data)
n_iter = n_data // batchsize
print(n_iter, 'iterations,', n_epoch, 'epochs')
model = FastStyleNet()
vgg = VGG()
serializers.load_npz('vgg16.model', vgg)
if args.initmodel:
print('load model from', args.initmodel)
serializers.load_npz(args.initmodel, model)
if args.gpu >= 0:
cuda.get_device(args.gpu).use()
model.to_gpu()
vgg.to_gpu()
xp = np if args.gpu < 0 else cuda.cupy
O = optimizers.Adam(alpha=args.lr)
O.setup(model)
if args.resume:
print('load optimizer state from', args.resume)
serializers.load_npz(args.resume, O)
style = vgg.preprocess(np.asarray(Image.open(args.style_image).convert('RGB').resize((image_size,image_size)), dtype=np.float32))
style = xp.asarray(style, dtype=xp.float32)
style_b = xp.zeros((batchsize,) + style.shape, dtype=xp.float32)
for i in range(batchsize):
style_b[i] = style
feature_s = vgg(Variable(style_b, volatile=True))
gram_s = [gram_matrix(y) for y in feature_s]
for epoch in range(n_epoch):
print('epoch', epoch)
for i in range(n_iter):
model.zerograds()
vgg.zerograds()
indices = range(i * batchsize, (i+1) * batchsize)
x = xp.zeros((batchsize, 3, image_size, image_size), dtype=xp.float32)
for j in range(batchsize):
x[j] = load_image(imagepaths[i*batchsize + j], image_size)
xc = Variable(x.copy(), volatile=True)
x = Variable(x)
y = model(x)
xc -= 120
y -= 120
feature = vgg(xc)
feature_hat = vgg(y)
L_feat = lambda_f * F.mean_squared_error(Variable(feature[2].data), feature_hat[2]) # compute for only the output of layer conv3_3
L_style = Variable(xp.zeros((), dtype=np.float32))
for f, f_hat, g_s in zip(feature, feature_hat, gram_s):
L_style += lambda_s * F.mean_squared_error(gram_matrix(f_hat), Variable(g_s.data))
L_tv = lambda_tv * total_variation(y)
L = L_feat + L_style + L_tv
print('(epoch {}) batch {}/{}... training loss is...{}'.format(epoch, i, n_iter, L.data))
L.backward()
O.update()
if args.checkpoint > 0 and i % args.checkpoint == 0:
serializers.save_npz('models/{}_{}_{}.model'.format(output, epoch, i), model)
serializers.save_npz('models/{}_{}_{}.state'.format(output, epoch, i), O)
print('save "style.model"')
serializers.save_npz('models/{}_{}.model'.format(output, epoch), model)
serializers.save_npz('models/{}_{}.state'.format(output, epoch), O)
serializers.save_npz('models/{}.model'.format(output), model)
serializers.save_npz('models/{}.state'.format(output), O)