-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy patheval_dataset.py
185 lines (154 loc) · 9.44 KB
/
eval_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# This code evaluates a dataset with Screened Poisson Surface Reconstruction (Meshlab)
# To evaluate with PCPNet normals, you need to manually place the PCPNet outputs (*.normals) in
# '{dataset_dir}/06_normals_pcpnet/' before running this script.
import numpy as np
import os
import shutil
import time
from source.base import utils
from source.base import utils_mp
from source.base import evaluation
from source.base import file_utils
def clean_up_broken_inputs(base_dir, dataset_dir, final_out_dir, final_out_extension,
clean_up_dirs, broken_dir='broken'):
final_out_dir_abs = os.path.join(base_dir, dataset_dir, final_out_dir)
final_output_files = [f for f in os.listdir(final_out_dir_abs)
if os.path.isfile(os.path.join(final_out_dir_abs, f)) and
(final_out_extension is None or f[-len(final_out_extension):] == final_out_extension)]
# move inputs and intermediate results that have no final output
final_output_file_stems = set(tuple([f.split('.', 1)[0] for f in final_output_files]))
final_output_file_stem_len = len(final_output_files[0].split('.', 1)[0])
inconsistent_file_length = final_output_file_stem_len != len(final_output_files[-1].split('.', 1)[0])
if inconsistent_file_length:
print('WARNING: output files don\'t have consistent length. Clean-up broken inputs may do unwanted things.')
for clean_up_dir in clean_up_dirs:
dir_abs = os.path.join(base_dir, dataset_dir, clean_up_dir)
if not os.path.isdir(dir_abs):
continue
dir_files = [f for f in os.listdir(dir_abs) if os.path.isfile(os.path.join(dir_abs, f))]
if inconsistent_file_length:
dir_file_stems = [f.split('.', 1)[0] for f in dir_files]
else:
dir_file_stems = [f[:final_output_file_stem_len] for f in dir_files]
dir_file_stems_without_final_output = [f not in final_output_file_stems for f in dir_file_stems]
dir_files_without_final_output = np.array(dir_files)[dir_file_stems_without_final_output]
broken_dir_abs = os.path.join(base_dir, dataset_dir, broken_dir, clean_up_dir)
broken_files = [os.path.join(broken_dir_abs, f) for f in dir_files_without_final_output]
for fi, f in enumerate(dir_files_without_final_output):
os.makedirs(broken_dir_abs, exist_ok=True)
shutil.move(os.path.join(dir_abs, f), broken_files[fi])
def apply_meshlab_filter(base_dir, dataset_dir, pts_dir, recon_mesh_dir, num_processes, filter_file, meshlabserver_bin):
pts_dir_abs = os.path.join(base_dir, dataset_dir, pts_dir)
recon_mesh_dir_abs = os.path.join(base_dir, dataset_dir, recon_mesh_dir)
os.makedirs(recon_mesh_dir_abs, exist_ok=True)
calls = []
pts_files = [f for f in os.listdir(pts_dir_abs)
if os.path.isfile(os.path.join(pts_dir_abs, f)) and f[-4:] == '.xyz']
for pts_file in pts_files:
pts_file_abs = os.path.join(pts_dir_abs, pts_file)
poisson_rec_mesh_abs = os.path.join(recon_mesh_dir_abs, pts_file[:-4] + '.ply')
if file_utils.call_necessary(pts_file_abs, poisson_rec_mesh_abs):
cmd_args = ' -i {} -o {} -s {}'.format(pts_file_abs, poisson_rec_mesh_abs, filter_file)
calls.append((meshlabserver_bin + cmd_args,))
utils_mp.start_process_pool(utils_mp.mp_worker, calls, num_processes)
def read_config(config, config_file):
if os.path.isfile(config_file):
config.read(config_file)
else:
print("""
ERROR: No config file found. Create a 'settings.ini' in the dataset directory with these contents:
[general]
only_for_evaluation = 0
patch_size = 0.01
grid_resolution = 100
num_query_points_per_patch = 10
num_scans_per_mesh_min = 5
num_scans_per_mesh_max = 30
scanner_noise_sigma = 0.01
""")
def main(dataset_name: str):
# meshlabserver = "C:\\Program Files\\VCG\\MeshLab\\meshlabserver.exe"
meshlabserver = '~/repos/meshlab/src/distrib/meshlabserver'
num_processes = 12
# num_processes = 1
base_dir = 'datasets'
dataset_dir = dataset_name
print('Processing dataset: ' + dataset_name)
filter_broken_inputs = True
dirs_to_clean = \
['00_base_meshes',
'01_base_meshes_ply',
'02_meshes_cleaned',
'03_meshes',
'04_pts', '04_blensor_py',
'05_patch_dists', '05_patch_ids', '05_query_dist', '05_query_pts',
'05_patch_ids_grid', '05_query_pts_grid', '05_query_dist_grid',
'06_poisson_rec', '06_mc_gt_recon', '06_poisson_rec_gt_normals',
'06_normals', '06_normals/pts', '06_dist_from_p_normals']
if filter_broken_inputs: # the user might have removed unwanted input meshes after some processing
clean_up_broken_inputs(base_dir=base_dir, dataset_dir=dataset_dir,
final_out_dir='00_base_meshes', final_out_extension=None,
clean_up_dirs=dirs_to_clean, broken_dir='broken')
start = time.time()
print('### reconstruct poisson with pcpnet normals')
dirs = (os.path.join(base_dir, dataset_dir, '04_pts_vis'),
os.path.join(base_dir, dataset_dir, '06_normals_pcpnet'),)
endings_per_dir = ('.xyz', '.normals', )
file_utils.concat_txt_dirs(
ref_dir=os.path.join(base_dir, dataset_dir, '06_normals_pcpnet'), ref_ending='.normals',
dirs=dirs, endings_per_dir=endings_per_dir,
out_dir=os.path.join(base_dir, dataset_dir, '07_pts_normals_pcpnet'), out_ending='.xyz')
print('### poisson reconstruction from pcpnet normals')
apply_meshlab_filter(base_dir=base_dir, dataset_dir=dataset_dir, pts_dir='07_pts_normals_pcpnet',
recon_mesh_dir='06_poisson_rec_pcpnet_normals', num_processes=num_processes,
filter_file='poisson.mlx', meshlabserver_bin=meshlabserver)
end = time.time()
print('SPSR with PCPNet normals took: {}'.format(end - start))
print('### normal estimation and poisson reconstruction pcpnet - hausdorff distance')
new_meshes_dir_abs = os.path.join(base_dir, dataset_dir, '06_poisson_rec_pcpnet_normals')
ref_meshes_dir_abs = os.path.join(base_dir, dataset_dir, '03_meshes')
csv_file = os.path.join(base_dir, dataset_dir, 'comp_poisson_rec_pcpnet_normals.csv')
val_set_file_abs = os.path.join(base_dir, dataset_dir, 'valset.txt')
evaluation.mesh_comparison(new_meshes_dir_abs=new_meshes_dir_abs, ref_meshes_dir_abs=ref_meshes_dir_abs,
num_processes=num_processes, report_name=csv_file,
samples_per_model=10000, dataset_file_abs=val_set_file_abs)
# this works only when GT meshes are available
print('### get ground truth normals for point cloud')
utils.get_pts_normals(base_dir=base_dir, dataset_dir=dataset_dir,
dir_in_pointcloud='04_pts', dir_in_meshes='03_meshes',
dir_out_normals='06_normals', samples_per_model=100000, num_processes=num_processes)
print('### poisson reconstruction from gt normals')
apply_meshlab_filter(base_dir=base_dir, dataset_dir=dataset_dir, pts_dir='06_normals/pts',
recon_mesh_dir='06_poisson_rec_gt_normals', num_processes=num_processes,
filter_file='poisson.mlx', meshlabserver_bin=meshlabserver)
print('### normal estimation and poisson reconstruction gt normals - hausdorff distance')
new_meshes_dir_abs = os.path.join(base_dir, dataset_dir, '06_poisson_rec_gt_normals')
ref_meshes_dir_abs = os.path.join(base_dir, dataset_dir, '03_meshes')
csv_file = os.path.join(base_dir, dataset_dir, 'comp_poisson_rec_gt_normals.csv')
val_set_file_abs = os.path.join(base_dir, dataset_dir, 'valset.txt')
evaluation.mesh_comparison(new_meshes_dir_abs=new_meshes_dir_abs, ref_meshes_dir_abs=ref_meshes_dir_abs,
num_processes=num_processes, report_name=csv_file,
samples_per_model=10000, dataset_file_abs=val_set_file_abs)
# normal estimation with Meshlab is pretty inaccurate
#print('### normal estimation and poisson reconstruction')
#apply_meshlab_filter(base_dir=base_dir, dataset_dir=dataset_dir, pts_dir='04_pts',
# recon_mesh_dir='06_poisson_rec', num_processes=num_processes,
# filter_file='normals_poisson.mlx', meshlabserver_bin=meshlabserver)
#print('### normal estimation and poisson reconstruction - hausdorff distance')
#new_meshes_dir_abs = os.path.join(base_dir, dataset_dir, '06_poisson_rec')
#ref_meshes_dir_abs = os.path.join(base_dir, dataset_dir, '03_meshes')
#csv_file = os.path.join(base_dir, dataset_dir, 'comp_poisson_rec_ml_normals.csv')
#val_set_file_abs = os.path.join(base_dir, dataset_dir, 'valset.txt')
#utils_eval.mesh_comparison(new_meshes_dir_abs=new_meshes_dir_abs, ref_meshes_dir_abs=ref_meshes_dir_abs,
# num_processes=num_processes, report_name=csv_file,
# samples_per_model=10000, dataset_file_abs=val_set_file_abs)
if __name__ == "__main__":
datasets = [
'abc', 'abc_extra_noisy', 'abc_noisefree',
'famous_original', 'famous_noisefree', 'famous_dense', 'famous_extra_noisy', 'famous_sparse',
'thingi10k_scans_original', 'thingi10k_scans_dense', 'thingi10k_scans_sparse',
'thingi10k_scans_extra_noisy', 'thingi10k_scans_noisefree',
'real_world' # reconstruction with GT normals will fail at real_world
]
for d in datasets:
main(d)