-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathmake_dataset.py
811 lines (659 loc) · 32.9 KB
/
make_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
import numpy as np
import os
import shutil
import random
import configparser
import trimesh
import trimesh.proximity
import trimesh.path
import trimesh.repair
import trimesh.sample
import trimesh.transformations as trafo
from source.base import utils
from source.base import utils_mp
from source.base import file_utils
from source import sdf
from source.base import point_cloud
def _convert_mesh(in_mesh, out_mesh):
mesh = None
try:
mesh = trimesh.load(in_mesh)
except AttributeError as e:
print(e)
except IndexError as e:
print(e)
except ValueError as e:
print(e)
except NameError as e:
print(e)
if mesh is not None:
try:
mesh.export(out_mesh)
except ValueError as e:
print(e)
def convert_meshes(in_dir_abs, out_dir_abs, target_file_type: str, num_processes=8):
"""
Convert a mesh file to another file type.
:param in_dir_abs:
:param out_dir_abs:
:param target_file_type: ending of wanted mesh file, e.g. '.ply'
:return:
"""
os.makedirs(out_dir_abs, exist_ok=True)
mesh_files = []
for root, dirs, files in os.walk(in_dir_abs, topdown=True):
for name in files:
mesh_files.append(os.path.join(root, name))
allowed_mesh_types = ['.off', '.ply', '.obj', '.stl']
mesh_files = list(filter(lambda f: (f[-4:] in allowed_mesh_types), mesh_files))
calls = []
for fi, f in enumerate(mesh_files):
file_base_name = os.path.basename(f)
file_out = os.path.join(out_dir_abs, file_base_name[:-4] + target_file_type)
if file_utils.call_necessary(f, file_out):
calls.append((f, file_out))
utils_mp.start_process_pool(_convert_mesh, calls, num_processes)
def _normalize_mesh(file_in, file_out):
mesh = trimesh.load(file_in)
bounds = mesh.extents
if bounds.min() == 0.0:
return
# translate to origin
translation = (mesh.bounds[0] + mesh.bounds[1]) * 0.5
translation = trimesh.transformations.translation_matrix(direction=-translation)
mesh.apply_transform(translation)
# scale to unit cube
scale = 1.0/bounds.max()
scale_trafo = trimesh.transformations.scale_matrix(factor=scale)
mesh.apply_transform(scale_trafo)
mesh.export(file_out)
def normalize_meshes(base_dir, in_dir, out_dir, dataset_dir, num_processes=1):
"""
Translate meshes to origin and scale to unit cube.
:param base_dir:
:param in_dir:
:param filter_dir:
:param out_dir:
:param dataset_dir:
:param num_processes:
:return:
"""
in_dir_abs = os.path.join(base_dir, dataset_dir, in_dir)
out_dir_abs = os.path.join(base_dir, dataset_dir, out_dir)
os.makedirs(out_dir_abs, exist_ok=True)
call_params = []
mesh_files = [f for f in os.listdir(in_dir_abs)
if os.path.isfile(os.path.join(in_dir_abs, f))]
for fi, f in enumerate(mesh_files):
in_file_abs = os.path.join(in_dir_abs, f)
out_file_abs = os.path.join(out_dir_abs, f)
if not file_utils.call_necessary(in_file_abs, out_file_abs):
continue
call_params += [(in_file_abs, out_file_abs)]
utils_mp.start_process_pool(_normalize_mesh, call_params, num_processes)
def _pcd_files_to_pts(pcd_files, pts_file_npy, pts_file, obj_locations, obj_rotations, min_pts_size=0, debug=False):
"""
Convert pcd blensor results to xyz or directly to npy files. Merge front and back scans.
Moving the object instead of the camera because the point cloud is in some very weird space that behaves
crazy when the camera moves. A full day wasted on this shit!
:param pcd_files:
:param pts_file_npy:
:param pts_file:
:param trafos_inv:
:param debug:
:return:
"""
import gzip
def revert_offset(pts_data: np.ndarray, inv_offset: np.ndarray):
pts_reverted = pts_data
# don't just check the header because missing rays may be added with NaNs
if pts_reverted.shape[0] > 0:
pts_offset_correction = np.broadcast_to(inv_offset, pts_reverted.shape)
pts_reverted += pts_offset_correction
return pts_reverted
# https://www.blensor.org/numpy_import.html
def extract_xyz_from_blensor_numpy(arr_raw):
# timestamp
# yaw, pitch
# distance,distance_noise
# x,y,z
# x_noise,y_noise,z_noise
# object_id
# 255*color[0]
# 255*color[1]
# 255*color[2]
# idx
hits = arr_raw[arr_raw[:, 3] != 0.0] # distance != 0.0 --> hit
noisy_xyz = hits[:, [8, 9, 10]]
return noisy_xyz
pts_data_to_cat = []
for fi, f in enumerate(pcd_files):
try:
if f.endswith('.numpy.gz'):
pts_data_vs = extract_xyz_from_blensor_numpy(np.loadtxt(gzip.GzipFile(f, "r")))
elif f.endswith('.numpy'):
pts_data_vs = extract_xyz_from_blensor_numpy(np.loadtxt(f))
elif f.endswith('.pcd'):
pts_data_vs, header_info = point_cloud.load_pcd(file_in=f)
else:
raise ValueError('Input file {} has an unknown format!'.format(f))
except EOFError as er:
print('Error processing {}: {}'.format(f, er))
continue
# undo coordinate system changes
pts_data_vs = utils.right_handed_to_left_handed(pts_data_vs)
# move back from camera distance, always along x axis
obj_location = np.array(obj_locations[fi])
revert_offset(pts_data_vs, -obj_location)
# get and apply inverse rotation matrix of camera
scanner_rotation_inv = trafo.quaternion_matrix(trafo.quaternion_conjugate(obj_rotations[fi]))
pts_data_ws_test_inv = trafo.transform_points(pts_data_vs, scanner_rotation_inv, translate=False)
pts_data_ws = pts_data_ws_test_inv
if pts_data_ws.shape[0] > 0:
pts_data_to_cat += [pts_data_ws.astype(np.float32)]
# debug outputs to check the rotations... the pointcloud MUST align exactly with the mesh
if debug:
point_cloud.write_xyz(file_path=os.path.join('debug', 'test_{}.xyz'.format(str(fi))), points=pts_data_ws)
if len(pts_data_to_cat) > 0:
pts_data = np.concatenate(tuple(pts_data_to_cat), axis=0)
if pts_data.shape[0] > min_pts_size:
point_cloud.write_xyz(file_path=pts_file, points=pts_data)
np.save(pts_file_npy, pts_data)
def sample_blensor(base_dir, dataset_dir, blensor_bin, dir_in,
dir_out, dir_out_vis, dir_out_pcd, dir_blensor_scripts,
num_scans_per_mesh_min, num_scans_per_mesh_max, num_processes, min_pts_size=0,
scanner_noise_sigma_min=0.0, scanner_noise_sigma_max=0.05):
"""
Call Blender to use a Blensor script to sample a point cloud from a mesh
:param base_dir:
:param dataset_dir:
:param dir_in:
:param dir_out:
:param dir_blensor_scripts:
:param num_scans_per_mesh_min: default: 5
:param num_scans_per_mesh_max: default: 100
:param scanner_noise_sigma_min: default: 0.0004, rather a lot: 0.01
:param scanner_noise_sigma_max: default: 0.0004, rather a lot: 0.01
:return:
"""
# test blensor scripts with: .\blender -P 00990000_6216c8dabde0a997e09b0f42_trimesh_000.py
blender_path = os.path.join(base_dir, blensor_bin)
dir_abs_in = os.path.join(base_dir, dataset_dir, dir_in)
dir_abs_out = os.path.join(base_dir, dataset_dir, dir_out)
dir_abs_out_vis = os.path.join(base_dir, dataset_dir, dir_out_vis)
dir_abs_blensor = os.path.join(base_dir, dataset_dir, dir_blensor_scripts)
dir_abs_pcd = os.path.join(base_dir, dataset_dir, dir_out_pcd)
os.makedirs(dir_abs_out, exist_ok=True)
os.makedirs(dir_abs_out_vis, exist_ok=True)
os.makedirs(dir_abs_blensor, exist_ok=True)
os.makedirs(dir_abs_pcd, exist_ok=True)
with open('blensor_script_template.py', 'r') as file:
blensor_script_template = file.read()
blender_blensor_calls = []
pcd_base_files = []
pcd_noisy_files = []
obj_locations = []
obj_rotations = []
obj_files = [f for f in os.listdir(dir_abs_in)
if os.path.isfile(os.path.join(dir_abs_in, f)) and f[-4:] == '.ply']
for fi, file in enumerate(obj_files):
# gather all file names involved in the blensor scanning
obj_file = os.path.join(dir_abs_in, file)
blensor_script_file = os.path.join(dir_abs_blensor, file[:-4] + '.py')
new_pcd_base_files = []
new_pcd_noisy_files = []
new_obj_locations = []
new_obj_rotations = []
rnd = np.random.RandomState(file_utils.filename_to_hash(obj_file))
num_scans = rnd.randint(num_scans_per_mesh_min, num_scans_per_mesh_max + 1)
noise_sigma = rnd.rand() * (scanner_noise_sigma_max - scanner_noise_sigma_min) + scanner_noise_sigma_min
for num_scan in range(num_scans):
pcd_base_file = os.path.join(
dir_abs_pcd, file[:-4] + '_{num}.numpy.gz'.format(num=str(num_scan).zfill(5)))
pcd_noisy_file = pcd_base_file[:-9] + '00000.numpy.gz'
obj_location = (rnd.rand(3) * 2.0 - 1.0)
obj_location_rand_factors = np.array([0.1, 1.0, 0.1])
obj_location *= obj_location_rand_factors
obj_location[1] += 4.0 # offset in cam view dir
obj_rotation = trafo.random_quaternion(rnd.rand(3))
# extend lists of pcd output files
new_pcd_base_files.append(pcd_base_file)
new_pcd_noisy_files.append(pcd_noisy_file)
new_obj_locations.append(obj_location.tolist())
new_obj_rotations.append(obj_rotation.tolist())
new_scan_sigmas = [noise_sigma] * num_scans
pcd_base_files.append(new_pcd_base_files)
pcd_noisy_files.append(new_pcd_noisy_files)
obj_locations.append(new_obj_locations)
obj_rotations.append(new_obj_rotations)
# prepare blensor calls if necessary
output_files = [os.path.join(dir_abs_pcd, os.path.basename(f)) for f in new_pcd_noisy_files]
output_files += [blensor_script_file]
if file_utils.call_necessary(obj_file, output_files):
blensor_script = blensor_script_template.format(
file_loc=obj_file,
obj_locations=str(new_obj_locations),
obj_rotations=str(new_obj_rotations),
evd_files=str(new_pcd_base_files),
scan_sigmas=str(new_scan_sigmas),
)
blensor_script = blensor_script.replace('\\', '/') # '\' would require escape sequence
with open(blensor_script_file, "w") as text_file:
text_file.write(blensor_script)
# start blender with python script (-P) and close without prompt (-b)
blender_blensor_call = '{} -P {} -b'.format(blender_path, blensor_script_file)
blender_blensor_calls.append((blender_blensor_call,))
utils_mp.start_process_pool(utils_mp.mp_worker, blender_blensor_calls, num_processes)
def get_pcd_origin_file(pcd_file):
origin_file = os.path.basename(pcd_file)[:-9] + '.xyz'
origin_file = origin_file.replace('00000.xyz', '.xyz')
origin_file = origin_file.replace('_noisy.xyz', '.xyz')
origin_file = origin_file.replace('_00000.xyz', '.xyz')
return origin_file
print('### convert pcd to pts')
call_params = []
for fi, files in enumerate(pcd_noisy_files):
pcd_files_abs = [os.path.join(dir_abs_pcd, os.path.basename(f)) for f in files]
pcd_origin = get_pcd_origin_file(files[0])
xyz_file = os.path.join(dir_abs_out_vis, pcd_origin)
xyz_npy_file = os.path.join(dir_abs_out, pcd_origin + '.npy')
if file_utils.call_necessary(pcd_files_abs, [xyz_npy_file, xyz_file]):
call_params += [(pcd_files_abs, xyz_npy_file, xyz_file, obj_locations[fi], obj_rotations[fi], min_pts_size)]
utils_mp.start_process_pool(_pcd_files_to_pts, call_params, num_processes)
def _clean_mesh(file_in, file_out, num_max_faces=None, enforce_solid=True):
mesh = trimesh.load(file_in)
mesh.process()
mesh.remove_unreferenced_vertices()
mesh.remove_degenerate_faces()
mesh.remove_duplicate_faces()
if not mesh.is_watertight:
mesh.fill_holes()
trimesh.repair.fill_holes(mesh)
if enforce_solid and not mesh.is_watertight:
return
if not mesh.is_winding_consistent:
trimesh.repair.fix_inversion(mesh, multibody=True)
trimesh.repair.fix_normals(mesh, multibody=True)
trimesh.repair.fix_winding(mesh)
if enforce_solid and not mesh.is_winding_consistent:
return
if enforce_solid and not mesh.is_volume: # watertight, consistent winding, outward facing normals
return
# large meshes might cause out-of-memory errors in signed distance calculation
if num_max_faces is None:
mesh.export(file_out)
elif len(mesh.faces) < num_max_faces:
mesh.export(file_out)
def clean_meshes(base_dir, dataset_dir, dir_in_meshes, dir_out, num_processes, num_max_faces=None, enforce_solid=True):
"""
Try to repair meshes or filter broken ones. Enforce that meshes are solids to calculate signed distances.
:param base_dir:
:param dataset_dir:
:param dir_in_meshes:
:param dir_out:
:param num_processes:
:param num_max_faces:
:param enforce_solid:
:return:
"""
dir_in_abs = os.path.join(base_dir, dataset_dir, dir_in_meshes)
dir_out_abs = os.path.join(base_dir, dataset_dir, dir_out)
os.makedirs(dir_out_abs, exist_ok=True)
calls = []
mesh_files = [f for f in os.listdir(dir_in_abs)
if os.path.isfile(os.path.join(dir_in_abs, f))]
files_in_abs = [os.path.join(dir_in_abs, f) for f in mesh_files]
files_out_abs = [os.path.join(dir_out_abs, f) for f in mesh_files]
for fi, f in enumerate(mesh_files):
# skip if result already exists and is newer than the input
if file_utils.call_necessary(files_in_abs[fi], files_out_abs[fi]):
calls.append((files_in_abs[fi], files_out_abs[fi], num_max_faces, enforce_solid))
utils_mp.start_process_pool(_clean_mesh, calls, num_processes)
def _get_and_save_query_pts(
file_in_mesh: str, file_out_query_pts: str, file_out_query_dist: str, file_out_query_vis: str,
num_query_pts: int, patch_radius: float,
far_query_pts_ratio=0.1, signed_distance_batch_size=1000, debug=False):
import trimesh
# random state for file name
rng = np.random.RandomState(file_utils.filename_to_hash(file_in_mesh))
in_mesh = trimesh.load(file_in_mesh)
# get query pts
query_pts_ms = sdf.get_query_pts_for_mesh(
in_mesh, num_query_pts, patch_radius, far_query_pts_ratio, rng)
np.save(file_out_query_pts, query_pts_ms.astype(np.float32))
# get signed distance
query_dist_ms = sdf.get_signed_distance(
in_mesh, query_pts_ms, signed_distance_batch_size)
# fix NaNs, Infs and truncate
nan_ids = np.isnan(query_dist_ms)
inf_ids = np.isinf(query_dist_ms)
query_dist_ms[nan_ids] = 0.0
query_dist_ms[inf_ids] = 1.0
query_dist_ms[query_dist_ms < -1.0] = -1.0
query_dist_ms[query_dist_ms > 1.0] = 1.0
np.save(file_out_query_dist, query_dist_ms.astype(np.float32))
if debug and file_out_query_vis is not None:
# save visualization
sdf.visualize_query_points(query_pts_ms, query_dist_ms, file_out_query_vis)
def get_query_pts_dist_ms(
base_dir, dataset_dir, dir_in_mesh,
dir_out_query_pts_ms,
dir_out_query_dist_ms,
dir_out_query_vis,
patch_radius,
num_query_pts=2000,
far_query_pts_ratio=0.1,
signed_distance_batch_size=1000,
num_processes=8,
debug=False):
"""
Get query points and their GT signed distances in model space.
:param base_dir:
:param dataset_dir:
:param dir_in_mesh:
:param dir_out_query_pts_ms:
:param dir_out_query_dist_ms:
:param dir_out_query_vis:
:param patch_radius:
:param num_query_pts:
:param far_query_pts_ratio:
:param signed_distance_batch_size:
:param num_processes:
:param debug:
:return:
"""
import os.path
from source.base import file_utils
dir_in_mesh_abs = os.path.join(base_dir, dataset_dir, dir_in_mesh)
dir_out_query_pts_abs = os.path.join(base_dir, dataset_dir, dir_out_query_pts_ms)
dir_out_query_dist_abs = os.path.join(base_dir, dataset_dir, dir_out_query_dist_ms)
dir_out_query_vis_abs = os.path.join(base_dir, dataset_dir, dir_out_query_vis)
os.makedirs(dir_out_query_pts_abs, exist_ok=True)
os.makedirs(dir_out_query_dist_abs, exist_ok=True)
if debug:
os.makedirs(dir_out_query_vis_abs, exist_ok=True)
# get query points
print('### get query points')
call_params = []
files_mesh = [f for f in os.listdir(dir_in_mesh_abs)
if os.path.isfile(os.path.join(dir_in_mesh_abs, f)) and f[-4:] == '.ply']
for fi, f in enumerate(files_mesh):
file_in_mesh = os.path.join(dir_in_mesh_abs, f)
file_out_query_pts = os.path.join(dir_out_query_pts_abs, f + '.npy')
file_out_query_dist = os.path.join(dir_out_query_dist_abs, f + '.npy')
file_out_query_vis = os.path.join(dir_out_query_vis_abs, f + '.ply')
if file_utils.call_necessary(file_in_mesh, [file_out_query_pts, file_out_query_dist]):
call_params.append((file_in_mesh, file_out_query_pts, file_out_query_dist, file_out_query_vis,
num_query_pts, patch_radius, far_query_pts_ratio,
signed_distance_batch_size, debug))
utils_mp.start_process_pool(_get_and_save_query_pts, call_params, num_processes)
def make_dataset_splits(base_dir, dataset_dir, final_out_dir, seed=42, only_test_set=False, testset_ratio=0.1):
rnd = random.Random(seed)
# write files for train / test / eval set
final_out_dir_abs = os.path.join(base_dir, dataset_dir, final_out_dir)
final_output_files = [f for f in os.listdir(final_out_dir_abs)
if os.path.isfile(os.path.join(final_out_dir_abs, f)) and f[-4:] == '.npy']
files_dataset = [f[:-8] for f in final_output_files]
if len(files_dataset) == 0:
raise ValueError('Dataset is empty! {}'.format(final_out_dir_abs))
if only_test_set:
files_test = files_dataset
else:
files_test = rnd.sample(files_dataset, max(3, min(int(testset_ratio * len(files_dataset)), 100))) # 3..50, ~10%
files_train = list(set(files_dataset).difference(set(files_test)))
files_test.sort()
files_train.sort()
file_train_set = os.path.join(base_dir, dataset_dir, 'trainset.txt')
file_test_set = os.path.join(base_dir, dataset_dir, 'testset.txt')
file_val_set = os.path.join(base_dir, dataset_dir, 'valset.txt')
file_utils.make_dir_for_file(file_test_set)
nl = '\n'
file_test_set_str = nl.join(files_test)
file_train_set_str = nl.join(files_train)
with open(file_test_set, "w") as text_file:
text_file.write(file_test_set_str)
if not only_test_set:
with open(file_train_set, "w") as text_file:
text_file.write(file_train_set_str)
with open(file_val_set, "w") as text_file:
text_file.write(file_test_set_str) # validate the test set by default
def clean_up_broken_inputs(base_dir, dataset_dir, final_out_dir, final_out_extension,
clean_up_dirs, broken_dir='broken'):
"""
Assume that the file stem (excluding path and everything after the first '.') is a unique identifier in
multiple directories.
"""
final_out_dir_abs = os.path.join(base_dir, dataset_dir, final_out_dir)
final_output_files = [f for f in os.listdir(final_out_dir_abs)
if os.path.isfile(os.path.join(final_out_dir_abs, f)) and
(final_out_extension is None or f[-len(final_out_extension):] == final_out_extension)]
if len(final_output_files) == 0:
print('Warning: Output dir "{}" is empty'.format(final_out_dir_abs))
return
# move inputs and intermediate results that have no final output
final_output_file_stems = set(tuple([f.split('.', 1)[0] for f in final_output_files]))
# final_output_file_stem_lengths = [len(f.split('.', 1)[0]) for f in final_output_files]
# num_final_output_file_stem_lengths = len(set(final_output_file_stem_lengths))
# inconsistent_file_length = num_final_output_file_stem_lengths > 1
# if inconsistent_file_length:
# print('WARNING: output files don\'t have consistent length. Clean-up broken inputs may do unwanted things.')
for clean_up_dir in clean_up_dirs:
dir_abs = os.path.join(base_dir, dataset_dir, clean_up_dir)
if not os.path.isdir(dir_abs):
continue
dir_files = [f for f in os.listdir(dir_abs) if os.path.isfile(os.path.join(dir_abs, f))]
dir_file_stems = [f.split('.', 1)[0] for f in dir_files]
dir_file_stems_without_final_output = [f not in final_output_file_stems for f in dir_file_stems]
dir_files_without_final_output = np.array(dir_files)[dir_file_stems_without_final_output]
broken_dir_abs = os.path.join(base_dir, dataset_dir, broken_dir, clean_up_dir)
broken_files = [os.path.join(broken_dir_abs, f) for f in dir_files_without_final_output]
for fi, f in enumerate(dir_files_without_final_output):
os.makedirs(broken_dir_abs, exist_ok=True)
shutil.move(os.path.join(dir_abs, f), broken_files[fi])
def write_dataset_csv(base_dir, dataset_dir, pts_dir, final_out_dir):
# get pts_file, dist_file, num_points
dist_dir_abs = os.path.join(base_dir, dataset_dir, final_out_dir)
pts_dir_abs = os.path.join(base_dir, dataset_dir, pts_dir)
pts_files = [f for f in os.listdir(pts_dir_abs)
if os.path.isfile(os.path.join(pts_dir_abs, f)) and f[-4:] == '.xyz']
pts_file_stems = set([f.split('.', 1)[0] for f in pts_files])
dist_files = [f for f in os.listdir(dist_dir_abs)
if os.path.isfile(os.path.join(dist_dir_abs, f)) and f[-13:] == '.xyz.dist.npz']
csv_data = []
for dist_file in dist_files:
dist_file_stem = dist_file.split('.', 1)[0]
dist_file_abs = os.path.join(dist_dir_abs, dist_file)
if dist_file_stem in pts_file_stems:
pts_file = dist_file_stem + '.xyz'
num_points = file_utils.load_npz(dist_file_abs).shape[0]
csv_data.append((pts_file, dist_file, str(num_points)))
csv_file = os.path.join(base_dir, dataset_dir, 'dataset_stats.csv')
file_utils.make_dir_for_file(csv_file)
nl = '\n'
csv_lines = [','.join(item) for item in csv_data]
csv_lines_str = nl.join(csv_lines)
with open(csv_file, "w") as text_file:
text_file.write(csv_lines_str)
def _reconstruct_gt(pts_file, p_ids_grid_file, query_dist_file, query_pts_file,
volume_out_file, mc_out_file,
grid_res, sigma, certainty_threshold):
pts_ms = np.load(pts_file)
p_ids_grid = np.load(p_ids_grid_file)
query_dist_ms = np.load(query_dist_file)
query_pts_ps = np.load(query_pts_file)
p_pts_ms = pts_ms[p_ids_grid]
query_pts_ms = utils.patch_space_to_model_space(query_pts_ps, p_pts_ms)
sdf.implicit_surface_to_mesh(query_dist_ms=query_dist_ms, query_pts_ms=query_pts_ms,
volume_out_file=volume_out_file, mc_out_file=mc_out_file,
grid_res=grid_res, sigma=sigma, certainty_threshold=certainty_threshold)
def reconstruct_gt(base_dir, dataset_dir,
pts_dir, p_ids_grid_dir, query_dist_dir, query_pts_dir,
gt_reconstruction_dir,
grid_resolution, sigma, certainty_threshold, num_processes):
"""
This is meant to test the reconstruction from GT signed distances.
Requires dense query points and SDs near the surface.
:param base_dir:
:param dataset_dir:
:param pts_dir:
:param p_ids_grid_dir:
:param query_dist_dir:
:param query_pts_dir:
:param gt_reconstruction_dir:
:param grid_resolution:
:param sigma:
:param certainty_threshold:
:param num_processes:
:return:
"""
pts_dir_abs = os.path.join(base_dir, dataset_dir, pts_dir)
p_ids_grid_dir_abs = os.path.join(base_dir, dataset_dir, p_ids_grid_dir)
query_dist_dir_abs = os.path.join(base_dir, dataset_dir, query_dist_dir)
query_pts_dir_abs = os.path.join(base_dir, dataset_dir, query_pts_dir)
recon_mesh_dir_abs = os.path.join(base_dir, dataset_dir, gt_reconstruction_dir)
recon_vol_dir_abs = os.path.join(base_dir, dataset_dir, gt_reconstruction_dir, 'vol')
os.makedirs(recon_mesh_dir_abs, exist_ok=True)
os.makedirs(recon_vol_dir_abs, exist_ok=True)
call_params = []
dist_files = [f for f in os.listdir(query_dist_dir_abs)
if os.path.isfile(os.path.join(query_dist_dir_abs, f)) and f[-8:] == '.xyz.npy']
for dist_file in dist_files:
pts_file_in = os.path.join(pts_dir_abs, dist_file)
p_ids_grid_file_in = os.path.join(p_ids_grid_dir_abs, dist_file)
query_dist_file_in = os.path.join(query_dist_dir_abs, dist_file)
query_pts_file_in = os.path.join(query_pts_dir_abs, dist_file)
recon_vol_file_out = os.path.join(recon_vol_dir_abs, dist_file[:-4] + '.off')
recon_mesh_file_out = os.path.join(recon_mesh_dir_abs, dist_file[:-8] + '.ply')
if file_utils.call_necessary([pts_file_in, p_ids_grid_file_in, query_dist_file_in, query_pts_file_in],
[recon_mesh_file_out, recon_vol_file_out]):
call_params.append((pts_file_in, p_ids_grid_file_in, query_dist_file_in, query_pts_file_in,
recon_vol_file_out, recon_mesh_file_out, grid_resolution, sigma, certainty_threshold))
utils_mp.start_process_pool(_reconstruct_gt, call_params, num_processes)
def read_config(config, config_file):
if os.path.isfile(config_file):
config.read(config_file)
else:
print("""
ERROR: No config file found. Create a 'settings.ini' in the dataset directory with these contents:
[general]
only_for_evaluation = 0
grid_resolution = 256
epsilon = 3
num_scans_per_mesh_min = 5
num_scans_per_mesh_max = 30
scanner_noise_sigma = 0.01
""")
def make_dataset(dataset_name: str, blensor_bin: str, base_dir: str, num_processes=7,
seed=42, num_query_points_per_shape=2000):
"""
Make dataset from meshes.
:param dataset_name:
:param blensor_bin:
:param base_dir:
:param num_processes: 16 processes need up to 64 GB RAM for the signed distances
:param seed: only used for the dataset splits
:param num_query_points_per_shape: should be greater than the training parameter 'patches_per_shape'
:return:
"""
dataset_dir = dataset_name
config_file = os.path.join(base_dir, dataset_dir, 'settings.ini')
config = configparser.ConfigParser()
read_config(config, config_file)
print('Processing dataset: ' + config_file)
# no signed distances needed, therefore less strict requirements for input meshes
only_for_evaluation = bool(int(config['general']['only_for_evaluation'])) # default: false
grid_resolution = int(config['general']['grid_resolution']) # default: 128 e.g. for marching cubes reconstruction
epsilon = int(config['general']['epsilon']) # default: 3
num_scans_per_mesh_min = int(config['general']['num_scans_per_mesh_min']) # default: 5
num_scans_per_mesh_max = int(config['general']['num_scans_per_mesh_max']) # default: 30
scanner_noise_sigma_min = float(config['general']['scanner_noise_sigma_min']) # default: 0.0004, rather a lot: 0.01
scanner_noise_sigma_max = float(config['general']['scanner_noise_sigma_max']) # default: 0.0004, rather a lot: 0.01
patch_radius = point_cloud.get_patch_radius(grid_resolution, epsilon)
# the user might have removed unwanted input meshes after some processing
# this moves (intermediate) outputs that don't have inputs anymore to the 'broken' dir
filter_broken_inputs = True
dirs_to_clean = \
['00_base_meshes',
'01_base_meshes_ply',
'02_meshes_cleaned',
'03_meshes',
'04_pts', '04_pts_vis', '04_blensor_py',
'05_patch_dists', '05_patch_ids', '05_query_dist', '05_query_pts',
'05_patch_ids_grid', '05_query_pts_grid', '05_query_dist_grid',
'06_poisson_rec', '06_mc_gt_recon', '06_poisson_rec_gt_normals',
'06_normals', '06_normals/pts', '06_dist_from_p_normals']
if filter_broken_inputs:
clean_up_broken_inputs(base_dir=base_dir, dataset_dir=dataset_dir,
final_out_dir='00_base_meshes', final_out_extension=None,
clean_up_dirs=dirs_to_clean, broken_dir='broken')
print('### convert base meshes to ply')
convert_meshes(in_dir_abs=os.path.join(base_dir, dataset_dir, '00_base_meshes'),
out_dir_abs=os.path.join(base_dir, dataset_dir, '01_base_meshes_ply'),
target_file_type='.ply', num_processes=num_processes)
if filter_broken_inputs:
clean_up_broken_inputs(base_dir=base_dir, dataset_dir=dataset_dir,
final_out_dir='01_base_meshes_ply', final_out_extension='.ply',
clean_up_dirs=dirs_to_clean, broken_dir='broken')
print('### clean mesh')
clean_meshes(base_dir=base_dir, dataset_dir=dataset_dir,
dir_in_meshes='01_base_meshes_ply', dir_out='02_meshes_cleaned', num_processes=num_processes,
num_max_faces=None if only_for_evaluation else 50000,
enforce_solid=True)
if filter_broken_inputs:
clean_up_broken_inputs(base_dir=base_dir, dataset_dir=dataset_dir,
final_out_dir='02_meshes_cleaned', final_out_extension='.ply',
clean_up_dirs=dirs_to_clean, broken_dir='broken')
print('### scale and translate mesh')
normalize_meshes(base_dir=base_dir, in_dir='02_meshes_cleaned', out_dir='03_meshes', dataset_dir=dataset_dir,
num_processes=num_processes)
print('### sample with Blensor')
sample_blensor(base_dir=base_dir, dataset_dir=dataset_dir, blensor_bin=blensor_bin,
dir_in='03_meshes', dir_out='04_pts', dir_out_vis='04_pts_vis', dir_out_pcd='04_pcd',
dir_blensor_scripts='04_blensor_py',
num_scans_per_mesh_min=num_scans_per_mesh_min, num_scans_per_mesh_max=num_scans_per_mesh_max,
num_processes=num_processes,
min_pts_size=0 if only_for_evaluation else 5000,
scanner_noise_sigma_min=scanner_noise_sigma_min, scanner_noise_sigma_max=scanner_noise_sigma_max)
if filter_broken_inputs:
clean_up_broken_inputs(base_dir=base_dir, dataset_dir=dataset_dir,
final_out_dir='04_pts', final_out_extension='.xyz.npy',
clean_up_dirs=dirs_to_clean, broken_dir='broken')
if not only_for_evaluation:
print('### make query points, calculate signed distances')
dir_mesh = '03_meshes'
dir_query_dist = '05_query_dist'
dir_query_pts_ms = '05_query_pts'
dir_out_query_vis = '05_query_vis' # None to disable
far_query_pts_ratio = 0.5 # 0.1 # not too little or the network fails at the inside classification
get_query_pts_dist_ms(
base_dir=base_dir, dataset_dir=dataset_dir, dir_in_mesh=dir_mesh,
dir_out_query_pts_ms=dir_query_pts_ms,
dir_out_query_dist_ms=dir_query_dist,
dir_out_query_vis=dir_out_query_vis,
patch_radius=patch_radius,
num_query_pts=num_query_points_per_shape,
far_query_pts_ratio=far_query_pts_ratio,
signed_distance_batch_size=500,
num_processes=num_processes,
debug=True)
print('### statistics and clean up')
if filter_broken_inputs:
clean_up_broken_inputs(base_dir=base_dir, dataset_dir=dataset_dir,
final_out_dir='05_query_pts' if only_for_evaluation else '05_query_dist',
final_out_extension='.npy',
clean_up_dirs=dirs_to_clean, broken_dir='broken')
make_dataset_splits(base_dir=base_dir, dataset_dir=dataset_dir,
final_out_dir='04_pts' if only_for_evaluation else'05_query_pts',
seed=seed, only_test_set=only_for_evaluation, testset_ratio=0.1)
if __name__ == "__main__":
blensor_bin = "bin/Blensor-x64.AppImage"
base_dir = 'datasets'
num_processes = 7
datasets = [
'abc', 'abc_extra_noisy', 'abc_noisefree',
'famous_original', 'famous_noisefree', 'famous_dense', 'famous_extra_noisy', 'famous_sparse',
'thingi10k_scans_original', 'thingi10k_scans_dense', 'thingi10k_scans_sparse',
'thingi10k_scans_extra_noisy', 'thingi10k_scans_noisefree'
]
for d in datasets:
make_dataset(dataset_name=d, blensor_bin=blensor_bin, base_dir=base_dir, num_processes=num_processes)