-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathmake_pc_dataset.py
171 lines (129 loc) · 5.97 KB
/
make_pc_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Turn your point clouds into a dataset that the network can use.
# Put your point clouds (accepted formats are ['.off', '.ply', '.obj', '.stl']) in '00_base_pc'.
# You may need to change the hard-coded dataset name in the main from 'datasets = ['real_world', ]' to your dataset.
import numpy as np
import os
import random
import trimesh
import trimesh.proximity
import trimesh.path
import trimesh.repair
import trimesh.sample
from source.base import utils_mp
from source.base import file_utils
from source.base import point_cloud
def _to_unit_cube(mesh: trimesh.Trimesh):
bounds = mesh.extents
if bounds.min() == 0.0:
return
# translate to origin
translation = (mesh.bounds[0] + mesh.bounds[1]) * 0.5
translation = trimesh.transformations.translation_matrix(direction=-translation)
mesh.apply_transform(translation)
# scale to unit cube
scale = 1.0/bounds.max()
scale_trafo = trimesh.transformations.scale_matrix(factor=scale)
mesh.apply_transform(scale_trafo)
return mesh
def _convert_point_cloud(in_pc, out_pc_xyz, out_pc_npy, target_num_points=150000):
mesh = None
try:
mesh = trimesh.load(in_pc)
except AttributeError as e:
print(e)
except IndexError as e:
print(e)
except ValueError as e:
print(e)
except NameError as e:
print(e)
if mesh is not None:
mesh = _to_unit_cube(mesh)
points = mesh.vertices
points = points[:, :3] # remove normals
points = points.astype(np.float32)
# get sub-sample
if target_num_points is not None and target_num_points > 0 and target_num_points < points.shape[0]:
sub_sample_ids = np.random.choice(np.arange(points.shape[0]), target_num_points, replace=False)
points = points[sub_sample_ids]
file_utils.make_dir_for_file(out_pc_npy)
file_utils.make_dir_for_file(out_pc_xyz)
np.save(out_pc_npy, points)
point_cloud.write_xyz(out_pc_xyz, points)
def convert_point_clouds(in_dir_abs, out_dir_abs, out_dir_npy_abs, target_file_type: str,
target_num_points=150000, num_processes=8):
"""
Convert a mesh file to another file type.
:param in_dir_abs:
:param out_dir_abs:
:param out_dir_npy_abs:
:param target_file_type: ending of wanted mesh file, e.g. '.ply'
:param target_num_points: limit the number of points in the point cloud with random sub-sampling
:param num_processes:
:return:
"""
os.makedirs(out_dir_abs, exist_ok=True)
mesh_files = []
for root, dirs, files in os.walk(in_dir_abs, topdown=True):
for name in files:
mesh_files.append(os.path.join(root, name))
allowed_mesh_types = ['.off', '.ply', '.obj', '.stl']
mesh_files = list(filter(lambda mesh_file: (mesh_file[-4:] in allowed_mesh_types), mesh_files))
calls = []
for fi, f in enumerate(mesh_files):
file_base_name = os.path.basename(f)
file_out = os.path.join(out_dir_abs, file_base_name[:-4] + target_file_type)
file_out_npy = os.path.join(out_dir_npy_abs, file_base_name[:-4] + target_file_type + '.npy')
if file_utils.call_necessary(f, [file_out, file_out_npy]):
calls.append((f, file_out, file_out_npy, target_num_points))
utils_mp.start_process_pool(_convert_point_cloud, calls, num_processes)
def make_dataset_splits(base_dir, dataset_dir, final_out_dir, seed=42, only_test_set=False, testset_ratio=0.1):
rnd = random.Random(seed)
# write files for train / test / eval set
final_out_dir_abs = os.path.join(base_dir, dataset_dir, final_out_dir)
final_output_files = [f for f in os.listdir(final_out_dir_abs)
if os.path.isfile(os.path.join(final_out_dir_abs, f)) and f[-4:] == '.npy']
files_dataset = [f[:-8] for f in final_output_files]
if len(files_dataset) == 0:
raise ValueError('Dataset is empty! {}'.format(final_out_dir_abs))
if only_test_set:
files_test = files_dataset
else:
files_test = rnd.sample(files_dataset, max(3, min(int(testset_ratio * len(files_dataset)), 100))) # 3..50, ~10%
files_train = list(set(files_dataset).difference(set(files_test)))
files_test.sort()
files_train.sort()
file_train_set = os.path.join(base_dir, dataset_dir, 'trainset.txt')
file_test_set = os.path.join(base_dir, dataset_dir, 'testset.txt')
file_val_set = os.path.join(base_dir, dataset_dir, 'valset.txt')
file_utils.make_dir_for_file(file_test_set)
nl = '\n'
file_test_set_str = nl.join(files_test)
file_train_set_str = nl.join(files_train)
with open(file_test_set, "w") as text_file:
text_file.write(file_test_set_str)
if not only_test_set:
with open(file_train_set, "w") as text_file:
text_file.write(file_train_set_str)
with open(file_val_set, "w") as text_file:
text_file.write(file_test_set_str) # validate the test set by default
def main(dataset_name: str):
base_dir = 'datasets'
#num_processes = 1
num_processes = 7 # 16 processes need up to 64 GB RAM for the signed distances
dataset_dir = dataset_name
print('Processing dataset: ' + os.path.join(base_dir, dataset_dir))
# no signed distances needed
only_for_evaluation = True
print('### convert base meshes to ply')
convert_point_clouds(in_dir_abs=os.path.join(base_dir, dataset_dir, '00_base_pc'),
out_dir_abs=os.path.join(base_dir, dataset_dir, '04_pts_vis'),
out_dir_npy_abs=os.path.join(base_dir, dataset_dir, '04_pts'),
target_file_type='.xyz', target_num_points=50000, num_processes=num_processes)
make_dataset_splits(base_dir=base_dir, dataset_dir=dataset_dir,
final_out_dir='04_pts' if only_for_evaluation else'05_query_pts',
seed=42, only_test_set=only_for_evaluation, testset_ratio=0.1)
if __name__ == "__main__":
datasets = ['real_world', ]
for d in datasets:
main(d)