-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeasure_object_size_camera.py
64 lines (46 loc) · 1.91 KB
/
measure_object_size_camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import cv2
from object_detector import *
import numpy as np
# Load Aruco detector
parameters = cv2.aruco.DetectorParameters_create()
aruco_dict = cv2.aruco.Dictionary_get(cv2.aruco.DICT_5X5_50)
# Load Object Detector
detector = HomogeneousBgDetector()
# Load Cap
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
while True:
_, img = cap.read()
# Get Aruco marker
corners, _, _ = cv2.aruco.detectMarkers(img, aruco_dict, parameters=parameters)
if corners:
# Draw polygon around the marker
int_corners = np.int0(corners)
cv2.polylines(img, int_corners, True, (0, 255, 0), 5)
# Aruco Perimeter
aruco_perimeter = cv2.arcLength(corners[0], True)
# Pixel to cm ratio
pixel_cm_ratio = aruco_perimeter / 20
contours = detector.detect_objects(img)
# Draw objects boundaries
for cnt in contours:
# Get rect
rect = cv2.minAreaRect(cnt)
(x, y), (w, h), angle = rect
# Get Width and Height of the Objects by applying the Ratio pixel to cm
object_width = w / pixel_cm_ratio
object_height = h / pixel_cm_ratio
# Display rectangle
box = cv2.boxPoints(rect)
box = np.int0(box)
cv2.circle(img, (int(x), int(y)), 5, (0, 0, 255), -1)
cv2.polylines(img, [box], True, (255, 0, 0), 2)
cv2.putText(img, "Width {} cm".format(round(object_width, 1)), (int(x - 100), int(y - 20)), cv2.FONT_HERSHEY_PLAIN, 2, (100, 200, 0), 2)
cv2.putText(img, "Height {} cm".format(round(object_height, 1)), (int(x - 100), int(y + 15)), cv2.FONT_HERSHEY_PLAIN, 2, (100, 200, 0), 2)
cv2.imshow("Image", img)
key = cv2.waitKey(1)
if key == 27:
break
cap.release()
cv2.destroyAllWindows()