-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmakeMonsters.py
258 lines (217 loc) · 9.6 KB
/
makeMonsters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import numpy as N
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib.ticker as Tick
#Add optParse module
class monsterGenerator(object):
def __init__(self, inParticleRadius=5.9, inDamping=1.5, inFrac=0.5, inPad=1.8):
"""
Contains recipe to create, diffract and show a low-pass-filtered, random particle contrast.
If particle and diffraction parameters are not given, then default ones are used:
particleRadius = 5.9 (num. of pixels; good results if number is x.9, where x is an integer),
damping = 1.5 (larger damping=larger DeBye-Waller factor),
frac = 0.5 (frac. of most intense realspace voxels forced to persist in iterative particle generation),
pad = 1.8 (extra voxels to pad on 3D particle density to create support for phasing),
radius = N.floor(particleRadius) + N.floor(pad) (half length of cubic volume that holds particle),
size = 2*radius + 1 (length of cubic volume that holds particle).
Defined in function helpfile for diffract():
support,
density,
supportPositions.
Defined in function helpfile for diffract():
z,
sigma,
qmax,
qmin,
numPixToEdge,
detectorDist,
detector,
beamstop,
intensities.
"""
self.particleRadius = inParticleRadius
self.damping = inDamping
self.frac = inFrac
self.pad = inPad
self.radius = int(N.floor(self.particleRadius) + N.floor(self.pad))
self.size = 2*self.radius + 1
#Re-defined after makeMonster() is called
self.support = []
self.density = []
self.supportPositions = []
#Re-defined after diffract() is called
self.z = 1.
self.sigma = 6.0
self.qmax = N.ceil(self.sigma * self.particleRadius)
self.qmin = 1.4302966531242025 * (self.qmax / self.particleRadius)
zSq = self.z*self.z
self.numPixToEdge = N.floor(self.qmax / N.sqrt(zSq/(1.+zSq) + (zSq/N.sqrt(1+zSq) -self.z)))
self.detectorDist = self.z * self.numPixToEdge
self.detector = []
self.beamstop = []
self.intensities = []
def makeParticle(self):
"""
Recipe for creating random, "low-passed-filtered binary" contrast by
alternating binary projection and low-pass-filter on an random, 3D array of numbers.
Variables defined here:
support = sphereical particle support (whose radius is less than particleRadius given),
density = 3D particle contrast,
supportPositions = voxel position of support used in phasing.
"""
[x,y,z] = N.mgrid[-self.radius:self.radius+1, -self.radius:self.radius+1, -self.radius:self.radius+1]
self.support = N.sqrt(x*x + y*y + z*z) < self.particleRadius
filter = N.fft.ifftshift( N.exp(-self.damping * (x*x + y*y + z*z) / (self.radius*self.radius)) )
suppRad = N.floor(self.radius)
flatSupport = self.support.flatten()
lenIter = self.size * self.size * self.size
iter = N.random.rand(lenIter)
numPixsToKeep = N.ceil(self.frac * self.support.sum())
#Recipe for making binary particle.
for i in range(4):
#Sets the largest numPixsToKeep pixels to one
# and the rest to zero
iter *= flatSupport
ordering = iter.argsort()[-1:-numPixsToKeep-1:-1]
iter[:] = 0
iter[ordering] = 1.
#Smoothing with Gaussian filter
temp = N.fft.fftn(iter.reshape(self.size, self.size, self.size))
iter = N.real( N.fft.ifftn(filter*temp).flatten() )
#Create padded support
paddedSupport = N.sqrt(x*x + y*y + z*z) < (self.particleRadius + self.pad)
self.supportPositions = N.array([[self.radius+i,self.radius+j,self.radius+k] for i,j,k,l in zip(x.flat, y.flat, z.flat, paddedSupport.flat) if l >0]).astype(int)
self.density = iter.reshape(self.size, self.size, self.size)
def placePixel(self, ii, jj, zL):
"""
Gives (qx,qy,qz) position of pixels on Ewald sphere when given as input
the (x,y,z)=(ii,jj,zL) position of pixel in the diffraction laboratory.
The latter is measured in terms of the size of each realspace pixel.
"""
v = N.array([ii,jj,zL])
vDenom = N.sqrt(1 + (ii*ii + jj*jj)/(zL*zL))
return v/vDenom - N.array([0,0,zL])
def diffract(self, inMaxScattAngDeg=45., inSigma=6.0, inQminNumShannonPix=1.4302966531242025):
"""
Requires makeMonster() to first be called, so that particle density is created.
Function diffract() needs the maximum scattering angle to the edge of the detector, the
sampling rate of Shannon pixels (inSigma=6 means each Shannon pixel is sampled
by roughly 6 pixels), and the central missing data region has a radius of
inQminNumShannonPix (in units of Shannon pixels).
Variables redefined here:
z = cotangent of maximum scattering angle,
sigma = sampling rate on Shannon pixels,
qmax = number of pixels to edge of detector,
numPixToEdge = same as qmax,
detectorDist = detector-particle distance (units of detector pixels),
beamstop = voxel positions of central disk of missing data on detector,
detector = pixel position of 2D area detector (projected on Ewald sphere),
intensities = 3D Fourier intensities of particle.
"""
self.z = 1/N.tan(N.pi * inMaxScattAngDeg / 180.)
self.sigma = inSigma
self.qmax = N.ceil(self.sigma * self.particleRadius)
zSq = self.z*self.z
self.numPixToEdge = N.floor(self.qmax / N.sqrt(zSq/(1.+zSq) + (zSq/N.sqrt(1+zSq) -self.z)))
self.detectorDist = self.z * self.numPixToEdge
self.qmin = inQminNumShannonPix * (self.qmax / self.particleRadius)
#make beamstop
fQmin = N.floor(self.qmin)
[x,y,z] = N.mgrid[-fQmin:fQmin+1, -fQmin:fQmin+1, -fQmin:fQmin+1]
tempBeamstop = [[i,j,k] for i,j,k in zip(x.flat, y.flat, z.flat) if (N.sqrt(i*i + j*j + k*k) < (self.qmin - N.sqrt(3.)))]
self.beamstop = N.array(tempBeamstop).astype(int)
#make detector
[x,y] = N.mgrid[-self.numPixToEdge:self.numPixToEdge+1, -self.numPixToEdge:self.numPixToEdge+1]
tempDetectorPix = [self.placePixel(i,j,self.detectorDist) for i,j in zip(x.flat, y.flat)]
qualifiedDetectorPix = [i for i in tempDetectorPix if (self.qmin<N.sqrt(i[0]*i[0] +i[1]*i[1] + i[2]*i[2])<self.qmax)]
self.detector = N.array(qualifiedDetectorPix)
#make fourier intensities
intensSize = 2 * self.qmax + 1
self.intensities = N.zeros((intensSize, intensSize, intensSize))
self.intensities[:self.size, :self.size, :self.size] = self.density
self.intensities = N.fft.fftshift(N.fft.fftn(self.intensities))
self.intensities = N.abs(self.intensities * self.intensities.conjugate())
def showDetector(self):
"""
Shows detector pixels as points on scatter plot; could be slow for large detectors.
"""
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(self.detector[:,0], self.detector[:,1], self.detector[:,2], c='r', marker='s')
ax.set_zlim3d(-self.qmax, self.qmax)
plt.show()
def showDensity(self):
"""
Shows particle density as an array of sequential, equal-sized 2D sections.
"""
subplotlen = int(N.ceil(N.sqrt(len(self.density))))
fig = plt.figure(figsize=(9.5, 9.5))
for i in range(len(self.density)):
ax = fig.add_subplot(subplotlen, subplotlen, i+1)
ax.imshow(self.density[:,:,i], vmin=0, vmax=1.1, interpolation='nearest', cmap=plt.cm.bone)
ax.set_title('z=%d'%i, color='white', position=(0.85,0.))
plt.show()
def showLogIntensity(self, inSection=0):
"""
Show a particular intensities section of Fourier intensities.
Sections range from -qmax to qmax.
"""
plotSection = inSection
if(plotSection<=0):
plotSection += self.qmax
fig = plt.figure(figsize=(13.9,9.5))
ax = fig.add_subplot(111)
ax.set_title("log(intensities) of section q=%d"%plotSection)
self.currPlot = plt.imshow(N.log(self.intensities[:,:,plotSection]), interpolation='nearest')
self.colorbar = plt.colorbar(self.currPlot, pad=0.02)
plt.show()
def showLogIntensitySlices(self):
"""
Shows Fourier intensities as an array of sequential, equal-sized 2D sections.
Maximum intensities set to logarithm of maximum intensity in 3D Fourier volume.
"""
subplotlen = int(N.ceil(N.sqrt(len(self.intensities))))
maxLogIntens = N.log(self.intensities.max())
fig = plt.figure(figsize=(13.5, 9.5))
for i in range(len(self.intensities)):
ax = fig.add_subplot(subplotlen, subplotlen, i+1)
ax.imshow(N.log(self.intensities[:,:,i]), vmin=0, vmax=maxLogIntens, interpolation='nearest')
ax.set_xticks(())
ax.set_yticks(())
ax.set_title('%d'%(i-self.qmax), color='white', position=(0.85,0.))
plt.show()
def writeSupportToFile(self, filename="support.dat"):
header = "%d\t%d\n" % (self.qmax, len(self.supportPositions))
f = open(filename, 'w')
f.write(header)
for i in self.supportPositions:
text = "%d\t%d\t%d\n" % (i[0], i[1], i[2])
f.write(text)
f.close()
def writeDensityToFile(self, filename="density.dat"):
f = open(filename, "w")
self.density.tofile(f, sep="\t")
f.close()
def writeDetectorToFile(self, filename="detector.dat"):
header = "%d\t%d\t%d\n" % (self.qmax, len(self.detector), len(self.beamstop))
f = open(filename, 'w')
f.write(header)
for i in self.detector:
text = "%e\t%e\t%e\n" % (i[0], i[1], i[2])
f.write(text)
for i in self.beamstop:
text = "%d\t%d\t%d\n" % (i[0], i[1], i[2])
f.write(text)
f.close()
def writeIntensitiesToFile(self, filename="intensity.dat"):
f = open(filename, "w")
self.intensities.tofile(f, sep="\t")
f.close()
def writeAllOuputToFile(self, supportFileName="support.dat", densityFileName="density.dat", detectorFileName="detector.dat", intensitiesFileName="intensity.dat"):
"""
Convenience function for writing output
"""
self.writeSupportToFile(supportFileName)
self.writeDensityToFile(densityFileName)
self.writeDetectorToFile(detectorFileName)
self.writeIntensitiesToFile(intensitiesFileName)