-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMitschrieb.tex
1489 lines (1459 loc) · 49 KB
/
Mitschrieb.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{article}
\title{Funktionale Programmierung Mitschrieb}
\usepackage{fancyhdr}
\pagestyle{fancy}
\usepackage{hyperref}
\usepackage{enumerate}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{nicefrac}
\fancyhf{}
\fancyhead[C]{Torsten Grust - Functional Programming}
\usepackage{fontspec}
\setmonofont{Andale Mono}
\usepackage[english]{babel}
\author{Finn Ickler}
\usepackage{mdframed}
\usepackage{tikz}
\usepackage{epigraph}
\usepackage{minted}
\renewcommand{\listingscaption}{Code example}
\newcommand{\Haskell}[1]{\mintinline{Haskell}{#1}}
\setcounter{secnumdepth}{-1}
\hypersetup{%
pdfborder = {0 0 0}
}
\begin{document}
\maketitle
\epigraph{\glqq Avoid success at all cost \grqq}{Simon Peyton Jones}
\tableofcontents
\listoflistings
\section{Vorlesung 1}
\begin{listing}
\caption{Hello World}
\begin{minted}{haskell}
-- Hello World Haskell
main :: IO ()
main = putStrLn "Chewie, we're home"
\end{minted}
\end{listing}
\subsection{Functional Programming (FP)}
A programming language is a medium for expressive ideas (not to get a computer to perform operations ). Thus programs must be written for people to read, and only incidentally for machines.
\subsection{Computational Model in FP : \emph{Reduction}}
Replace expressions by their value.\\
IN FP, expressions are formed by applying functions to values.
\begin{enumerate}
\item Function as in maths: $x = y \rightarrow f(x) = f(y)$
\item Functions are values like numbers or text
\end{enumerate}
\begin{tabular}{l|c|c}
&FP&Imperative\\
construction & function application and composition & statement sequencing\\
execution & reduction (expression evaluation) & state changes\\
semantics & $\lambda$-calculus&denotational
\end{tabular}\bigskip\\
$ n \in \mathbb{N}, n \geq 2$ is a prime number $\Leftrightarrow$ the set of non-trivial factors of n is empty.\\
$n$ is prime $\Leftrightarrow \{ m \mid m \in m \in \{2,\ldots,n-1\}, n mod m = 0 \} = \{\}$\\
\begin{listing}[h!]
\begin{minted}{c}
int IsPrime(int n)
{
int m;
int found_factor;
found_factor
for (m = 2; m <= n -1; m++)
{
if (n % m == 0)
{
found_factor = 1 ;
break;
}
}
return !found_factor;
}
\end{minted}
\caption{isPrime in C}
\end{listing}
\begin{listing}[h!]
\begin{minted}{Haskell}
isPrime :: Integer -> Bool
isPrime n = factors n == []
where
factors :: Integer -> [Integer]
factors n = [ m | m <- [2..n-1], mod n m == 0]
main :: IO ()
main = do
let n = 42
print (isPrime n)
\end{minted}
\caption{isPrime in Haskell}
\end{listing}
\newpage
\usemintedstyle[Haskell]{bw}
\definecolor{bg}{rgb}{0.95,0.95,0.95}
\begin{listing}[h!]
\begin{minted}[bgcolor=bg]{Haskell}
let xs = [ x+1 | x <- [0..9] ]
:sprint xs = _
length xs
:sprint xs = [_,_,_,_,_,_,_,_,_]
\end{minted}
\caption{Lazy Evaluation in der ghci REPL}
\end{listing}
\usemintedstyle[Haskell]{default}
\subsection{Haskell Ramp Up}
Read $\equiv$ as ''denotes the same value as''\\
Apply f to value e:\quad f \textvisiblespace e \\(juxtaposition, ''apply'', binary operator \textvisiblespace, Haskell speak: infixL 10 \textvisiblespace)
= \textvisiblespace has max precedence (10): f $e_1$ +$e_2 \equiv $(f $e_1$) + $e_2$
\textvisiblespace associates to the left g \textvisiblespace f \textvisiblespace e $\equiv$ (g f) e
Function composition:
\begin{enumerate}[-]
\item g (f e)
\item Operator ''.'' (''after'') : (g.f) e (. = $\circ$) = g(f (e))
\item Alternative ''apply'' operator \$ (lowest precedence, associates to the right), infix 0\$): f\$$e_1$+ $e_2$ = f ($e_1 + e_2$)
\end{enumerate}
\section{Vorlesung 2}
\begin{listing}
\caption{Verschiedene Schreibweise einer Applikation}
\begin{minted}[bgcolor=bg]{Haskell}
cos 2 * pi
cos (2 * pi)
cos $ 2 * pi
isLetter (head (reverse ("It's a " ++ "Trap")))
(isLetter . head . reverse ) ("It's a" ++ "Trap")
isLetter $ head $ reverse $ "It's a" ++ "Trap"
\end{minted}
\end{listing}
\noindent Prefix application of binary infix operator $\oplus$
\begin{minted}[escapeinside=||]{Haskell}
(|$\oplus) e_1 e_2 \equiv e_1 \oplus e_2$|
|$(\&\&)$| True False |$\equiv$| False
\end{minted}
Infix application of binary function f:
\begin{minted}[escapeinside=||]{Haskell}
|$e_1$| `f` |$e_2$| |$\equiv$| f |$e_1 e_2$|
x `elem` xs |$\equiv$| x |$\in$| xs
\end{minted}
User defined operators with characters : \mintinline{Haskell}|!#%&*+/<=>?@\^|~|
\begin{listing}
\caption{Eigener $\approx$ Opperator}
\begin{minted}{Haskell}
epsilon :: Double
epsilon = 0.00001
(~=~) :: Double -> Double -> Bool
x ~=~ y = abs (x - y) < epsilon
infix 4 ~=~
\end{minted}
\end{listing}
\subsection{Values and Types}
Read \mintinline{Haskell}|::| as ''has type''\\
Any Haskell value e has a type t (\mintinline{Haskell}{e::t}) that is determined at compile time.\\
The \mintinline{Haskell}|::| type assignment is either given explicitly or inferred by the computer
\subsection{Types}
\begin{tabular}{lll}
Type&Description&Value\\
\hline
Int & fixed precision integers ($-2^{63}\ldots2^{63}-1$)&\Haskell{0,1,42}\\
Integer & arbitrary Precision integers & \Haskell{0,10^100}\\
Float,Double & Single/Double precision floating points & \Haskell{0.1,1e03}\\
Char & Unicode Character&\mintinline[escapeinside=||]{Haskell}{'x','\t', '△', '\8710'}\\
Bool & Booleans & \mintinline[escapeinside=||]{Haskell}{True, False}\\
() & Unit (single-value type) & \mintinline[escapeinside=||]{Haskell}{()}
\end{tabular}
\begin{minted}[bgcolor =bg]{Haskell}
2
it :: Integer
42 :: Int
it :: Int
'a'
it :: Char
True
it :: Bool
10^100
it :: Integer
10^100 :: Double
it :: Double
\end{minted}
\subsection{Type Constructors}
\begin{itemize}
\item Build new types from existing Types
\item Let a,b denote arbitrary Types (type variables)
\end{itemize}
\begin{tabular}{lp{6cm}l}
Type Constructor& Description & Values\\
\hline
(a,b)&pairs of values of types a and b& \Haskell{(1,True) :: (Int, Bool)}\\
($\text{a}_1,\text{a}_2,\ldots,\text{a}_n$)& n-Types& \Haskell{2,False :: (Int, Bool)}\\
\Haskell{[a]} &list of values of type a & \Haskell{[] :: [a]}\\
\Haskell{Maybe} a & optional value of type a & \Haskell{Just 42 Maybe Integer}\\
& & \Haskell{Nothing :: Maybe a}\\
\Haskell{Either} a b & Choice between values of Type a and b& \Haskell{Left 'x' :: Either Char b}\\
& & \Haskell{Right pi :: Either a Double}\\
\Haskell{IO} a & I/O action that returns a value of type a (can habe side effects ) & \Haskell{print 42 :: IO} ()\\
& & \Haskell{getChar :: IO Char}\\
a \Haskell{->} b & function from type a to b & \Haskell{isLetter :: Char -> Bool}
\end{tabular}
\begin{minted}[bgcolor=bg]{Haskell}
(1, '1', 1.0)
it :: (Integer, Char, Double)
[1, '1', 1.0]
it :: Fehler
[0.1,1.0,0.01]
it :: [Double]
[]
it :: [t]
"Yoda"
it :: [Char]
['Y', 'o', 'd', 'a']
"Yoda"
[Just 0, Nothing, Just 2]
it :: [Maybe Integer]
[Left True, Right 'a']
it :: [Either Bool Char]
print 'x'
it :: ()
getChar
*
it :: Char
:t getChar
getChar :: Io Char
:t fst
fst :: (a,b) -> a
:t snd
snd :: (a,b) -> b
:t head
head :: [a] -> a
:t (++)
(++) :: [a] -> [a] -> [a]
\end{minted}
\subsection{Currying}
\begin{itemize}
\item Recall:\begin{enumerate}
\item $e_1$ \Haskell{++} $e_2 \equiv$ \Haskell{(++)} $e_1 e_2$
\item \Haskell{++} $e_1 e_2 \equiv$ \Haskell{((++)} $e_1) e_2$
\end{enumerate}
\item Function application happens one argument at a time (currying, Haskell B. Curry)
\item Type of n-ary function: : $a_1$ \Haskell{->} $a_2$ \Haskell{... ->} $a_n$ \Haskell{-> b}
\item Type constructor \Haskell{->} associates to the right thus read the type as:\\ $a_1$ \Haskell{->} ($a_2$ \Haskell{->} $a_3$ (\Haskell{... ->} ($a_n$ \Haskell{-> b})\ldots))
\item Enables partial application: ''Give me a value of type $a_1$, I'll give you a (n-1)-ary function of type $a_2$ \Haskell{->} $a_3$ \Haskell{-> ... ->} $a_n$ \Haskell{-> b}
\end{itemize}
\begin{minted}[bgcolor = bg]{Haskell}
"Chew" ++ "bacca"
"Chewbacca"
(++) "Chew" "bacca"
"Chewbacca"
((++) "Chew") "bacca"
"Chewbacca"
:t (++) "Chew"
"Chew" :: [Char] -> [Char]
let chew = (++) "Chew"
chew "bacca"
"Chewbacca"
let double (*) 2
double 21
42
\end{minted}
\section{Vorlesung 3}
\subsection{Defining Values (and thus: Functions)}
\begin{itemize}
\item = binds names to values, names must not start with A-Z (Haskell style: camelCase)
\item Define constant (0-ary) c, value of c is that of expression:\\
c = e
\item Define n-ary function, arguments $x_i$ and f may occur in e (no "letrec" needed)\\
f $x_1\ x_2\ldots x_n = e$
\item Hskell programm = set of top-level bindings (order immaterial, no rebinding)
\item Good style: give type assignment for top-level bindings:\\
\Haskell{f :: a1 -> a2 -> b}\\
\Haskell{f } $x_1$ $x_2$ \Haskell{= e}
\begin{listing}[h!]
\caption{fac in Haskell}
\begin{minted}{Haskell}
fac :: Integer -> Integer
fac n = if n <= 1 then 1 else n * fac (n - 1)
fac2 n | n <= 1 = 1
| otherwise = n * fac2 (n - 1)
main :: IO ()
main = print $ fac 10
\end{minted}
\end{listing}
\item Guards (introduced by $\vert$).
\begin{minted}[escapeinside=@@]{Haskell}
f @$x_1\ x_2\ \ldots\ x_n$@
|@$q_1$@ = @$e_1$@
|@$q_2$@ = @$e_n$@
\end{minted}
\begin{listing}[h!]
\caption{Power in Haskell}
\begin{minted}{Haskell}
power :: Double -> Integer -> Double
power x k | k == 1 = x
| even k = power (x * x) (halve k)
| otherwise = x * power (x * x) (halve k)
where
even :: Integer -> Bool -- Nicht typisch
even n = n `mod` 2 == 0
halve n = n `div` 2
main :: IO ()
main = print $ power 2 16
\end{minted}
\end{listing}
\item $q_i$ (expressions of type Bool) evaluated top to bottom, first True guards ''wins''\\
$\mathrm{fac}\ n = \begin{cases}
1 &if n \geq 1\\
n \cdot \mathrm{fac(n-1)}& else
\end{cases}$\\
\end{itemize}
\subsection{Lokale Definitionen}
\begin{enumerate}
\item \Haskell{where} - binding : Local definitions visible in the entire right-hand-side (rhs) of a definition
\begin{minted}[escapeinside=@@]{Haskell}
f @$x_1\ x_2\ \ldots\ x_n$@
|@$q_1$@ = @$e_1$@
|@$q_2$@ = @$e_n$@
where
@$g_1$@ ... = @$b_1$@
@$g_i$@ ... = @$b_i$@
\end{minted}
\item \Haskell{let} - expression Local definitions visible inside an expression:
\begin{minted}[escapeinside=@@]{Haskell}
let @$g_1$@ ... = @$b_1$@
@$g_2$@ ... = @$b_1$@
in e
\end{minted}
\end{enumerate}
\section*{Haskells 2-dimensionale Syntax (Layout) (Forumbeitrag)}
\begin{mdframed}
Hallo zusammen,\\
in der dritten Vorlesung hatte ich erwähnt, dass Haskells Syntax darauf verzichtet, Blöcke (von Definitionen) mittels Sonderzeichen abzugrenzen und zu strukturieren.
Andere Programmiersprachen bedienen sich hier typischerweise Zeichen wie {, } und ;.\\
Haskell baut hingegen auf das sog. Layout, eine Art 2-dimensionaler Syntax. Wer schon einmal Python und seine Konventionen zur Einrückung von Blöcken hinter for und if kennengelernt hat, wird hier Parallelen sehen.
Die Regelungen zu Layout lauten wie folgt und werden vom Haskell-Compiler während der Parsing-Phase angewandt:
\begin{itemize}
\item The first token \textbf{after} a \Haskell{where/let} and the \textbf{first token of a top-level definition} define the upper-left corner of a box.
\item The first token left of the box closes the box (offside rule).
\item Insert a \textit{\{} before the box.
\item Insert a \textit{\}} after the box.
\item Insert a \textit{;} before each line that starts at left box border.
\end{itemize}
Die Anwendung dieser Regeln auf dieses Beispielprogramm:
\begin{minted}{Haskell}
let y = a * b
f x = (x + y) / y
in f c + f d
\end{minted}
führt zur Identifikation der folgenden Box:
\begin{verbatim}
┌──────────┄┄
let│y = a * b
│f x = (x + y) / y
└──────────┄┄
\end{verbatim}
\Haskell{in f c + f d}\\
Das Token in in der letzten Zeile steht links von der Boxgrenze im Abseits (siehe die offside rule). Der Parser führt nun die Zeichen {, } und ; ein und verarbeitet das Programm so, als ob der Programmierer diese Zeichen explizit angegeben hätte. (Haskell kann alternativ übrigens auch in dieser sog. expliziten Syntax geschrieben werden — das ist aber sehr unüblich, hat negativen Einfluss aufs Karma und ist vor allem für den Einsatz in automatischen Programmgeneratoren gedacht.)\\
Die explizite Form des obigen Programmes lautet (nach den drei letzten Regeln):
\begin{minted}{Haskell}
let {y = a * b
;f x = (x + y) / y}
in f c + f d
\end{minted}
Damit ist die Bedeutung des Programmes eindeutig und es ist klar, dass bspw. nicht das folgende gemeint war (in dieser alternativen Lesart ist das Token f aus der zweiten in die erste Zeile "gerutscht"):
\begin{minted}{Haskell}
let y = a * b f
x = (x + y) / y
in f c + f d
\end{minted}
Aus diesen Layout-Regeln ergeben sich recht einfache Richtlinien für das Einrücken in Haskell-Programmen:
\begin{itemize}
\item Die Zeilen einer Definition auf dem Top-Level beginnen jeweils ganz links (Spalte 1) im Quelltext.
\item Lokale where / let-Definitionen werden um mindestens ein Whitespace (typisch: 2 oder 4 Spaces oder 1 Tab) eingerückt.
\item Es gibt in Haskell ein weiteres Keyword (do, wird später thematisiert), das den gleichen Regeln wie where / let folgt.
\end{itemize}
Beste Grüße,\\
\phantom{ }\qquad —Torsten Grust
\end{mdframed}
\subsection{Lists([a])}
\begin{itemize}
\item Recursive definition:
\begin{enumerate}
\item\Haskell{[]} ist a list (nil), type \Haskell{[] :: [a]}
\item\Haskell{x : xs} (head, tail) is a list, if \Haskell{x :: a}, and \Haskell{xs :: [a]}.\\
\phantom{ }\quad \Haskell{cons: (:) :: a -> [a] -> [a] -> [a]} with \Haskell{infixr : 5}
\end{enumerate}
\item Notation: \Haskell{3:(2:1:[])} $\equiv$ \Haskell{3:2:1:[]} $\equiv$ \Haskell{[3,2,1]}
\end{itemize}
\begin{minted}[bgcolor =bg]{Haskell}
[]
it :: [t]
[1]
it :: [Integer]
[1,2,3]
it :: [Integer]
['z']
"z"
it :: [Char]
['z','x']
"zx"
it :: [Char]
[] == ""
True
it :: Bool
[[1],[2,3]]
it :: [[Integer]]
[[1],[2,3],[]]
[[1],[2,3]]
it :: [[Integer]]
False:[]
[False]
it :: [Bool]
(False:[]):[]
it ::[[Bool]]
:t [(<),(<=),(>)]
[(<),(<=),(>)] :: Ord a => [a -> a-> Bool]
[(1,"one"),(2,"two"),(3,"three")]
it :: [(Integer,[Char])]
:t head
head :: [a] -> a
:t tail :: [a] -> [a]
head "It's a trap"
'I'
it :: Char
tail "It's a trap"
"t's a trap"
it :: [Char]
reverse "Never odd or even"
"neve ro ddo reveN"
it :: [Char]
\end{minted}
\begin{itemize}
\item Law
$\forall $\texttt{xs}$ \ne$\Haskell{[]}: \Haskell{head xs : tail} = \texttt{xs}
\end{itemize}
\begin{minted}[bgcolor =bg]{Haskell}
:i String
type String = [Char]
\end{minted}
\subsection{Type Synonyms}
\begin{itemize}
\item Introduce your own type synonyms. (type names : {\em U}ppercase)
\Haskell{type} $t_1$ \Haskell{=} $t_2$
\end{itemize}
\begin{minted}{Haskell}
type Bits = [Integer]
type Predicate a = a -> Bool
bits :: Integer -> Bits
bits n | n == 0 =[0]
| otherwise = (n `mod` 2) : bits (n `div`2)
isEven :: Predicate Integer
isEven n = head (bits n) == 0
main :: IO ()
main = print $ isEven 35
\end{minted}
Sequence (lists of enumerable elements)
\begin{itemize}
\item \Haskell{[x..y]} $\equiv$ \Haskell{[x,x+1,x+2,...,y]}
\begin{minted}[bgcolor= bg]{Haskell}
['a'..'z']
"abcdefghijklmnopqrstuvwxyz"
\end{minted}
\item \Haskell{x,s..y}$\equiv$ \Haskell{[x,x+i,x+(2*i),...,y] where i = x-s}
\begin{minted}[bgcolor= bg]{Haskell}
[1,3..20]
[1,3,5,7,9,11,13,15,17,19]
[2,4..20]
[2,4,6,8,10,12,14,16,18,20]
\end{minted}
\item Infinite List \Haskell{[1..]}
\end{itemize}
\section{Vorlesung 4}
\subsection{Pattern Matching}
\emph{The} idiomatic way to define functions by cases:
\Haskell{f :: }$a_1$ \Haskell{->}$\ldots$\Haskell{->}$a_k$ \Haskell{-> b}\\
\Haskell{f} $p_{11} \ldots p_{1k} = e_1\\$
$\vdots\quad \vdots\quad \vdots\quad \vdots $\\
\Haskell{f} $p_{m1} \ldots p_{nk} = e_n$\\
For all $e_i$ \Haskell{:: b}
on $a_i$ call \Haskell{f} $x_1x_2\ldots x_k$ each $x_i$ is matched against patterns $p_{i1}\ldots p_{in}$ in order. Result is $e_r$ if the rth branch is the first in which all patterns match.\\
\begin{tabular}{lp{4cm}p{4cm}}
Pattern&Matches if\ldots&Bindings in $e_r$\\\hline
constant c&$x_1$ == c\\
variable v&always& v = $x_i$\\
wildcard \_ &always\\
tuple ($p_1,\ldots,p_n$)&components of $x_i$ match type component patterns& Those bound by the component patterns\\
$[]$& $x_i == []$\\
$p_1:p_2$&\Haskell{head} $x_1$ matches $p_1$, \Haskell{tail} $x_i$ matches $p_2$\\
$v@p$& p matches&those bound by $p$ and $v=x_i$
\end{tabular}\\
Note: In a pattern, a variable may only occur once (linear patterns only)
\begin{listing}
\caption{sum in Haskell}
\begin{minted}{Haskell}
--(1) if then else
sum' :: [Integer] -> Integer
sum' xs =
if xs == [] then 0 else head xs + sum' (tail xs)
--(2) guards
sum'' :: [Integer] -> Integer
sum'' xs | xs == [] = 0
| otherwise = head xs + sum'' (tail xs)
--(3) pattern matching
sum''' :: [Integer] -> Integer
sum''' [] = 0
sum''' (x:xs) = x + sum''' xs
main :: IO ()
main = do
print $ sum' [1,2,3]
print $ sum'' [1,2,3]
print $ sum''' [1,2,3]
\end{minted}
\end{listing}
\begin{listing}\label{ageof.hs}
\caption{ageOf in Haskell}
\inputminted{Haskell}{ageOf.hs}
\end{listing}
\begin{listing}
\caption{take in Haskell}
\inputminted{Haskell}{take.hs}
\end{listing}
\begin{listing}
\caption{merge in Haskell}
\inputminted[]{Haskell}{merges.hs}
\end{listing}
\begin{listing}
\caption{mergeSort in Haskell}
\inputminted{Haskell}{mergesort.hs}
\end{listing}
\subsection{Pattern matching in expressions (case)}
\begin{minted}[escapeinside=@@]{Haskell}
case e of @$p_1$@ | @$q_{11}$@ -> @$e_{11}$@
@$\vdots$@
@$p_n$@ | @$q_{n1}$@ -> @$e_{n1}$@
\end{minted}
\clearpage
\section{Vorlesung 5}
\subsection{Algebraic Data Types (Sum of Product Types)}
\begin{itemize}
\item Recall: \Haskell{[]} and \Haskell{(:)} are the \emph{constructors} for Type \Haskell{[a]}
\item Can define entirely new Type T and its constructors $K_i$:
\subitem \begin{tabbing}
\Haskell{data T} $a_1\ a_2\ \ldots\ a_n $\=$ = K_1\ b{11}\ \ldots\ b_{1n_1}$\\
\>\ $| K_2\ b_{21}\ \ldots\ b_{2n_2}$\\
\>\ $\vdots\qquad \vdots$\\
\>\ $| K_r\ b_{r1}\ \ldots\ b_{rnr}$
\end{tabbing}
\item Defines \emph{Type constructor} T and r \emph{value constructor} with types
\item $\text{\Haskell{K}}_i$\Haskell{::}$b_{i1}\ldots\ b_{ini}$\Haskell{-> T}$a_1\ a_2\ldots\ a_n$
\item $K_i$ identifier with uppercase first letter or symbol starting with \Haskell{:}
\item Example: [weekday.hs]
\subitem - Sum (or enumeration, choice)
\end{itemize}
\begin{listing}[h!]
\caption{weekday.hs}
\inputminted{Haskell}{weekday.hs}
\end{listing}
\begin{minted}[bgcolor = bg]{Haskell}
Wed
No instance for (Show Weekday) arising from a use of print
Thu == Sun
No instance for (Eq Weekday) arising from a use of '=='
Mon > Sat
No instance for (Ord Weekday) arising form a use of '>'
\end{minted}
\begin{itemize}
\item Add deriving \Haskell{(c,c,...,c)} to data declaration to define canonical (intuitive) operations:\\
\begin{tabular}{l|l}
c (class)&operations\\ \hline
\Haskell{Eq}&equality (\Haskell{==,/=})\\
\Haskell{Show}&printing (\Haskell{show})\\
\Haskell{Ord}&ordering (\Haskell{<,<=,max})\\
\Haskell{Enum}&enumeration (\Haskell{[x..y]})\\
\Haskell{Bounded}& bounds (\Haskell{minBound,maxBound})
\end{tabular}
\end{itemize}
\begin{listing}[h!]
\caption{RockPaperScissors.hs}
\inputminted{Haskell}{RockPaperScissor.hs}
\end{listing}
\begin{listing}[h!]\label{sequence.hs}
\caption{sequence.hs}
\inputminted{Haskell}{sequence.hs}
\end{listing}
\begin{itemize}
\item Product, r = 1, $n_1 = 2$ (\ref{sequence.hs})
\item Sum of Products:
\subitem \Haskell{data Maybe a} = \Haskell{Nothing | Just a}
\subitem \Haskell{data Either a b} = \Haskell{Left a | Right b}
\subitem \Haskell{data List a = Nil}
\subitem \phantom{List a}\ | \Haskell{Cons a (List a)}
\end{itemize}
\begin{listing}[h!]
\caption{cons.hs}
\inputminted{Haskell}{cons.hs}
\end{listing}
\begin{listing}[h!]
\caption{eval-compile-run.hs}
\inputminted{Haskell}{eval-compile-run.hs}
\end{listing}
\clearpage
\section{Vorlesung 6}
\subsection{Type Classes}
A Type class C defines a family of type signatures (''methods'') whichi all \emph{instances} of c must implement:\\
\begin{minted}[escapeinside=||]{Haskell}
class C where
|$f_1$| :: |$t_1$|
|$f_2$| :: |$t_2$|
|$\vdots$|
|$f_n$| :: |$t_n$|
\end{minted}
The $t_i$ \emph{must} mention a For any $f_i$, the class may provide default definitions (that instances may overwrite).\\
\begin{itemize}
\item Example
\begin{minted}{Haskell}
class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
x /= y = not (x == y)
x == y = not (x /= y)
\end{minted}
\end{itemize}
\subsection{Class Constraints}
A \emph{class constraint} \Haskell{e (a => :: t} (where t mentions a) says that e has type t \emph{only if} a is an instance of class C.\\
\begin{minted}[bgcolor=bg]{Haskell}
:t (+)
(+) :: Num a => a -> a -> a
:t print
print :: Show a => a -> IO ()
:hoogle +Data.List
Data.List sort :: Ord a => [a] -> [a]
:hoogle [(a,b)] -> a -> Maybe b
lookup :: Eq a => a -> a [(a,b)] -> Maybe b
\end{minted}
\begin{listing}[h!]
\inputminted{Haskell}{type-classes.hs}
\caption{Default implementation of Show, Ord and Enum}
\end{listing}
\subsection{Class inheritance}
Defining class $(c_1a,c_2a,\ldots)$ \Haskell{=>} (\Haskell{a where ...}) makes type class C a \emph{subclass} of the $c_1$ C inherits all methods of the $c_i$.\\
(\Haskell{a => t} implies $(c_1a,c_2a,\ldots,Ca)$\Haskell{=> t})
\clearpage
\includegraphics[scale=0.7]{classes.png}
\newpage
\subsection{Class Instances}
If type t implements the method of class C, t becomes an \emph{instance} of c:
\begin{minted}[escapeinside=||]{Haskell}
instance C t where
|$f_1$| = <def of |$f_1$|> --all f may be
|$\vdots$| --provided, minimal
|$f_n$| = <def of |$f_n$|> --complete definition
--must be provided
\end{minted}
$\bullet$ Example:\\
\begin{minted}{Haskell}
instance Eq Bool where
x == y = (x && y) || (not x && not y)
instance (Eq a, Eq b) => Eq (a,b) where
(x1,y1) == (x2,y2) = x1 == x2 && y1 == y2
instance Eq a => Eq [a] where
[] == [] = True
(x:xs) == (y:ys) = x == y && xs == ys
_ == _ = False
\end{minted}
$\bullet$ An instance definition for type constructor t may formulate type constraints for its argument types: a, b ... :\\
\Haskell{instance} ($c_1a,c_2,c_3b,\ldots)$ \Haskell{=>}
\Haskell{(t a b) where}\\
\begin{minted}[bgcolor=bg]{Haskell}
:i Enum
class Enum a where
succ :: a -> a
pred :: a -> a
toEnum :: Int -> a
fromEnum :: a -> Int
enumFrom :: a -> [a]
enumFromThen :: a -> a -> [a]
enumFromTo :: a -> a -> [a]
enumFromThenTo :: a -> a -> a -> [a]
-- Defined in ‘GHC.Enum’
instance Enum Word -- Defined in ‘GHC.Enum’
instance Enum Ordering -- Defined in ‘GHC.Enum’
instance Enum Integer -- Defined in ‘GHC.Enum’
instance Enum Int -- Defined in ‘GHC.Enum’
instance Enum Char -- Defined in ‘GHC.Enum’
instance Enum Bool -- Defined in ‘GHC.Enum’
instance Enum () -- Defined in ‘GHC.Enum’
instance Enum Float -- Defined in ‘GHC.Float’
instance Enum Double -- Defined in ‘GHC.Float’
fromEnum 'A'
65
fromEnum 'B'
66
toEnum 65
Exception: Prelude.Enum.().toEnum: bad argument
:t toEnum 65
toEnum 65 :: Enum a => a
toEnum 65 :: Char
'A'
toEnum 0 :: Bool
False
toEnum 20 :: Double
20.0
\end{minted}
\begin{listing}
\caption{Rock paper Scissors with instances}
\inputminted{Haskell}{RockPaperScissor-inheritance.hs}
\end{listing}
\subsection{Deriving Class Instances}
\begin{itemize}
\item Automatically made user-defined data (data ...) intsances of classes $c_i \in \{\text{\Haskell{Eq, Ord, Enum,Bounded, Show, Read}}\}$
\begin{minted}[escapeinside=@@]{Haskell}
data T @$a_1$@ @$a_2$@ ... @$a_n$@ = ...
|
deriving (@$c_1$@..,@$c_n$@)
\end{minted}
\end{itemize}
\inputminted{Haskell}{RockPaperScissor-deriving.hs}
\clearpage
\section{Vorlesung 7}
\subsection{Domain Specific Languages}
\begin{itemize}
\item ''small languages'' designed to easily and directly express the concepts/idioms of a given domain. \emph{Not} Turing-complete in general.
\item Examples:\qquad
\begin{tabular}{l|l}
Domain & DSL \\ \hline
Os automation & Shell scripts \\
Typesetting & \TeX, \LaTeX \\
Queries & SQL \\
Game Scripting & UnrealScript, Lua \\
Parsing & Bison, ANTLR
\end{tabular}
\item Functional Languages are good hosts for Embedded DSLs:
\subitem- algebraic data types (e.g model abstract syntax trees)
\subitem- higher-order functions (e.g control constructs)
\subitem- lightweight syntax (layout/whitespace, non-alphabetic identifiers)
\end{itemize}
Example: An embedded DSL for finite sets of integers:\\
\begin{minipage}{.85\textwidth}
\begin{minted}{Haskell}
type IntegerSet = ...
empty :: IntegerSet
insert :: Integer -> IntegerSet -> IntegerSet
delete :: Integer -> IntegerSet -> IntegerSet
member :: Integer -> IntegerSet -> Bool
\end{minted}
\end{minipage}%
\begin{minipage}{.15\textwidth}
$\Biggl\} $construct.\\ \ \\
$\}$ observer
\end{minipage}\\
\Haskell{member 3 (insert 1 (delete 3 (insert 2 (insert 3 empty))))} $\rightarrow$ \Haskell{False}\\
DSL: \textcircled{1} Library of functions, implementaion details exposed
\begin{listing}[h!]
\caption{library-exposed.hs}
\inputminted{Haskell}{library-exposed.hs}
\end{listing}
\subsection{Modules}
Group related definitions (names, types) in a single file (named \verb|M.hs|)
\begin{minted}{Haskell}
module M where
type Predicate a = a -> Bool
id :: a -> a
id = \x -> x
\end{minted}
Hierarchy : module A.B.C.M in file \verb|A/B/C/M.hs|
\begin{itemize}
\item definitions in other module M:\\
\subitem \Haskell{import M}
\item Explicit export Lists hode all other definitions
\subitem \Haskell{module M (id) where ...}
\subsubitem \Haskell{--type Predicate a not exported}
\item Abstract data types: export algebraic datatypes, but \emph{not} its constructor functions
\subitem \Haskell{module M (Rose, leaf) where}
\subitem \Haskell{data Rose a = Node a [Rose a] --constructor Node not exported}
\subitem \Haskell{leaf :: a -> Rose a}
\subitem \Haskell{leaf x = Node x []}
\item Export constructors:
\subitem \Haskell{module M (Rose (Node), leaf) where ...}
\subitem \Haskell{module M (Rose (...), leaf) where ...}
\item Qualified imports to partition space:
\subitem \Haskell{import qualified M [as Nickname]}
\subitem \Haskell{t :: M.Rose Char}
\subitem \Haskell{t = M.leaf 'x'}
\end{itemize}
\begin{minted}[bgcolor =bg]{Haskell}
:t fromJust
Not in scope: ‘fromJust’
import Data.Maybe
:t fromJust
fromJust :: Maybe a -> a
import qualified Data.Maybe
:t Data.Maybe.fromJust
Data.Maybe.fromJust :: Maybe a -> a
import qualified Data.Maybe as DM
:t DM.fromJust
DM.fromJust :: Maybe a -> a
\end{minted}
\begin{itemize}
\item Partially import module:
\subitem \Haskell{import Data.List (nub,maybe)}
\subitem \Haskell{import Prelude hiding (otherwise)}
\subitem \Haskell{otherwise :: Bool}
\subitem \Haskell{otherwise = False}
\end{itemize}
\begin{listing}[h!]
\caption{Two implementations of the SetLanguage module}
\inputminted{Haskell}{SetLanguage.hs}
\inputminted{Haskell}{SetlanguageFunction.hs}
\end{listing}
\clearpage
\section{Vorlesung 8}
\begin{itemize}
\item Shallow DSL embedding : Semantiics of DSL operations directly expressed in terms of a host language value (e.g list or characteristic function).
\subitem- constructors (\Haskell{empty,insert,delete}) perform the work, harder to add
\subitem- Observer (\Haskell{member}) trivial
\item \emph{Deep} DSL embedding: DSL operations build an abstract syntax Tree (AST) that represents applications and arguments
\subitem- constructors merely build the AST, very easy to add
\subitem- observer: interpret (traverse) the AST and perform the work
\end{itemize}
\begin{listing}[h!]
\caption{SetLanguageDeep.hs}
\inputminted{Haskell}{SetLanguageDeep.hs}
\end{listing}
\begin{minted}[bgcolor=bg]{Haskell}
:i Num
class Num a where
(+) :: a -> a -> a
(-) :: a -> a -> a
(*) :: a -> a -> a
negate :: a -> a
abs :: a -> a
signum :: a -> a
fromInteger :: Integer -> a
-- Defined in ‘GHC.Num’
instance Num Word -- Defined in ‘GHC.Num’
instance Num Integer -- Defined in ‘GHC.Num’
instance Num Int -- Defined in ‘GHC.Num’
instance Num Float -- Defined in ‘GHC.Float’
instance Num Double -- Defined in ‘GHC.Float’
:t 42
42 :: Num a => a
default ()
42
<interactive>:5:1:
No instance for (Num a0) arising from a use of ‘it’
The type variable ‘a0’ is ambiguous
Note: there are several potential instances:
instance Integral a => Num (GHC.Real.Ratio a)
-- Defined in ‘GHC.Real’
instance Num Integer -- Defined in ‘GHC.Num’
instance Num Double -- Defined in ‘GHC.Float’
...plus three others
In the first argument of ‘print’, namely ‘it’
In a stmt of an interactive GHCi command: print it
default (Integer,Rational, Double)
42
42
42 / 3
14 % 1
42.1
421 % 10
default (Integer,Double)
\end{minted}
\begin{listing}[h!]
\caption{ExprDeepNum.hs}
\inputminted{Haskell}{ExprDeepNum.hs}
\end{listing}
\begin{listing}[h!]
\caption{ExprDeepNum.hs}
\inputminted{Haskell}{ExprDeep.hs}
\end{listing}
\clearpage
\subsection{Generalized Algebraic Datatypes}
Idea :
\begin{itemize}
\item Encode the type of a DSL expression (here : Integer or Bool) in its \emph{Haskell type}
\item Use Haskell's type checker to ensure at \emph{compile time} that only well-typed DSL expressions are built:
\end{itemize}
\subsection{GADTs}
\begin{itemize}
\item Language extensions: \Haskell{{-# LANGUAGE GADTs #-}}
\item Define entirely new parameters \Haskell{Type T}, its (value) constructors $k_i$ and their type signatures
\begin{minted}[escapeinside=||]{Haskell}
data T |$a_1\ a_2\ \ldots\ a_n$| where
|$k_1$| :: |$b_{11}$| -> ... |$b_{1n_1}$| -> T |$t_{11}\ t_{12} \ldots\ t_{1n}$|
|$k_2$| :: |$b_{21}$| -> ... |$b_{2n_2}$| -> T |$t_{21}\ t_{22} \ldots\ t_{2n}$|
...
\end{minted}
\end{itemize}
\begin{listing}[h!]
\caption{ExprDeepTyped.hs}
\inputminted{Haskell}{ExprDeepTyped.hs}
\end{listing}
\clearpage
\section{Vorlesung 9}
\begin{listing}[h!]
\caption{ExprEmbedding.hs}
\inputminted{Haskell}{ExprEmbedding.hs}
\end{listing}
\begin{listing}
\caption{expr-embeddings.hs}
\inputminted{Haskell}{expr-embeddings.hs}
\end{listing}
\subsection{Shallow Embedding of a String Matching DSL}
\begin{itemize}
\item Pattern:
\begin{enumerate}[1.]
\item Given a string, a pattern returns a \emph{list of matches.} Match failure?\marginpar{Replace failure by a list of successes} return the \emph{empty list} (of matches)
\item A match consists of a value (e.g the match of characters, tokens parse tree) and the residual string to match\\
Thus: \Haskell{type Pattern a = String -> [(a,String)]}
\epigraph{A pattern of things is list of things and strings}{Torsten Grust, 10.12.2015}
\end{enumerate}
\item DSL design:\\
\begin{tabular}{l|l}
Pattern& DSL Function \Haskell{Char -> String ([Char,String])}\\ \hline
match literal& \Haskell{lit :: Char -> Pattern Char}\\
match empty string& \Haskell{empty :: a -> Pattern a}\\
fail always & \Haskell{fail :: Pattern a}\\
alternative &\Haskell{alt :: Pattern a -> Pattern a -> Pattern a}\\
sequence &\Haskell{seq ::(a -> b -> c)-> Pattern a -> Pattern b -> Pattern c}\\
repetition & \Haskell{Pattern a -> Pattern [a]}
\end{tabular}
\end{itemize}
\begin{listing}
\inputminted{Haskell}{PatternMatching.hs}
\end{listing}
\begin{listing}
\inputminted{Haskell}{pattern-match.hs}
\end{listing}
\clearpage
\section{Vorlesung 10}
\subsection{Lazy Evaluation}
To execute a programm, Haskell \emph{reduces} expression to values. Haskell uses \emph{normal order reduction} to select the next expression to reduce:
\begin{itemize}
\item The \emph{outermost} reducable expression (redex) is reduced first.
\item $\Rightarrow$ Function application are reduced first \emph{before} their arguments.
\item If no further redex is found, the expression is in \emph{normal form}. and reduction terminates.
\end{itemize}
\begin{minted}[escapeinside=||]{Haskell}
fst :: (a,b) -> a
fst (x,y) = x
sqr :: Num a => a -> a
sqr x = x * x
---------------
fst (sqr (1 + 3), sqr 2) |$\rightarrow$| sqr (1 + 3) [fst]
|$\rightarrow$| (1 + 3) * (1 + 3) [sqr]
|$\rightarrow$| 4 * 4 [+/+]
|$\rightarrow$| 16 [*]
\end{minted}
\begin{minted}{racket}
(define-racket-procedures pair
make-pair
pair?
(pair-fst)
(pair-snd))
(define fst
(lambda (p)
(pair-fst p)))
(define sqr
(lambda (x) (* x x)))
;Racket uses applicative order reduction (innermost first)
\end{minted}
\begin{listing}[h!]
\caption{This Programm compiles in Haskell, but not in Racket}
\inputminted[]{Haskell}{bomb.hs}
\end{listing}
Haskell avoids the duplication of work through \emph{graph reduction}: Expression are shared (referenced more than once) instead of duplicated. Reduction of \Haskell{sqr (1 + 3)}:\\
\begin{tikzpicture}
\node at (0,0) {sqr};
\draw (0,0) -- (0,-1);
\node at (0,-1) {+};
\draw (0,-1) -- (0.25,-1.25);
\node at (0.25,-1.25) {3};
\draw (0,-1) -- (-0.25,-1.25);
\node at (-0.25,-1.25) {1};
\end{tikzpicture}$\rightarrow$
\begin{tikzpicture}
\node at (0,0) {*};
\draw (0,0) -- (0,-1);
\node at (0,-1) {+};
\draw (0,-1) -- (0.25,-1.25);
\node at (0.25,-1.25) {3};
\draw (0,-1) -- (-0.25,-1.25);
\node at (-0.25,-1.25) {1};