-
Notifications
You must be signed in to change notification settings - Fork 162
/
Copy path04_homework_ImageRecognition.py
201 lines (137 loc) · 5.14 KB
/
04_homework_ImageRecognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# coding: utf-8
# # Image Recognition (with keras)
# Example code for the lecture series "Machine Learning for Physicists" by Florian Marquardt
#
# Session 4: Homework for lecture 3
#
# See https://machine-learning-for-physicists.org and the current course website linked there!
# This notebook shows how to:
# - recognize images (softmax, cross-entropy), using dense layers
#
#
# ### Imports: numpy and matplotlib and keras
# In[4]:
# keras: Sequential is the neural-network class, Dense is
# the standard network layer
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras import optimizers # to choose more advanced optimizers like 'adam'
from tqdm import tqdm # progress bar
import numpy as np
import matplotlib.pyplot as plt # for plotting
import matplotlib
matplotlib.rcParams['figure.dpi']=300 # highres display
# for updating display
# (very simple animation)
from IPython.display import clear_output
from time import sleep
# # Telling Lorentzians from Gaussians!
# In[34]:
N=100 # number of pixels in 'image'
Net=Sequential()
Net.add(Dense(30,input_shape=(N,), activation="relu"))
Net.add(Dense(20,activation="relu"))
Net.add(Dense(2,activation="softmax"))
Net.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['categorical_accuracy'])
# In[53]:
def my_generator1D(batchsize,x): # produce a batch of curves, randomly Lorentzian or Gaussian
R=np.random.uniform(size=batchsize) # width
A=np.random.uniform(size=batchsize) # amplitude
x0=np.random.uniform(size=batchsize,low=-1,high=1) # position
IsLorentzian=(np.random.uniform(size=batchsize)<0.5)*1.0 # Lorentzian? (==1) or Gaussian?
Lorentzians=A[:,None]/(((x[None,:]-x0[:,None])/R[:,None])**2+1) # make many random Lorentzians
Gaussians=A[:,None]*np.exp(-((x[None,:]-x0[:,None])/R[:,None])**2) # make many random Gaussians
inputLayer=IsLorentzian[:,None]*Lorentzians + (1-IsLorentzian[:,None])*Gaussians # now pick whatever type was decided
resultLayer=np.zeros([batchsize,2])
resultLayer[:,0]=IsLorentzian
resultLayer[:,1]=1-IsLorentzian # we could easily have more than just two categories
return( inputLayer, resultLayer )
# In[36]:
batchsize=20
steps=1000
x=np.linspace(-1,1,N)
costs=np.zeros(steps)
accuracy=np.zeros(steps)
skipsteps=10
for j in range(steps):
y_in,y_target=my_generator1D(batchsize,x)
costs[j],accuracy[j]=Net.train_on_batch(y_in,y_target)
if j%skipsteps==0:
clear_output(wait=True)
plt.plot(costs,color="darkblue",label="cost")
plt.plot(accuracy,color="orange",label="accuracy")
plt.legend()
plt.show()
# In[37]:
# plot some examples:
y_pred=Net.predict_on_batch(y_in)
n_samples=10
fig,ax=plt.subplots(ncols=n_samples,nrows=1,figsize=(10,1))
Name={}
Name[True]="L" # Lorentz
Name[False]="G" # Gauss
for j in range(n_samples):
ax[j].plot(y_in[j,:])
ax[j].set_ylim([-0.1,1])
ax[j].axis('off')
ax[j].set_title(Name[y_target[j,0]>0.5]+"/"+Name[y_pred[j,0]>0.5])
plt.show()
print("True Category / Network Prediction")
# # Random circles or squares
# In[49]:
# produce random circles or squares in 2D
def my_generator2D(batchsize,x,y):
R=np.random.uniform(low=0.2,high=1,size=batchsize)
x0=np.random.uniform(size=batchsize,low=-0.8,high=0.8)
y0=np.random.uniform(size=batchsize,low=-0.8,high=0.8)
IsCircle=(np.random.uniform(size=batchsize)<0.5)*1.0 # Circle? (==1) or Square?
Circles=1.0*((x[None,:]-x0[:,None])**2 + (y[None,:]-y0[:,None])**2 < R[:,None]**2)
Squares=1.0*(np.abs(x[None,:]-x0[:,None])<R[:,None])*(np.abs(y[None,:]-y0[:,None])<R[:,None])
inputLayer=IsCircle[:,None]*Circles + (1-IsCircle[:,None])*Squares
resultLayer=np.zeros([batchsize,2])
resultLayer[:,0]=IsCircle
resultLayer[:,1]=1-IsCircle
return( inputLayer, resultLayer )
# In[46]:
N=20 # number of pixels in 'image'
Net=Sequential()
Net.add(Dense(30,input_shape=(N**2,), activation="relu"))
Net.add(Dense(20,activation="relu"))
Net.add(Dense(2,activation="softmax"))
Net.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['categorical_accuracy'])
# In[50]:
batchsize=20
steps=1000
vals=np.linspace(-1,1,N)
X,Y=np.meshgrid(vals,vals)
x,y=X.flatten(),Y.flatten() # make 1D arrays, as needed for dense layers!
costs=np.zeros(steps)
accuracy=np.zeros(steps)
skipsteps=10
for j in range(steps):
y_in,y_target=my_generator2D(batchsize,x,y)
costs[j],accuracy[j]=Net.train_on_batch(y_in,y_target)
if j%skipsteps==0:
clear_output(wait=True)
plt.plot(costs,color="darkblue",label="cost")
plt.plot(accuracy,color="orange",label="accuracy")
plt.legend()
plt.show()
# In[52]:
# plot some examples:
y_pred=Net.predict_on_batch(y_in)
n_samples=10
fig,ax=plt.subplots(ncols=n_samples,nrows=1,figsize=(10,1))
Name={}
Name[True]="C" # Circle
Name[False]="S" # Square
for j in range(n_samples):
ax[j].imshow(np.reshape(y_in[j,:],[N,N]),origin='lower')
ax[j].axis('off')
ax[j].set_title(Name[y_target[j,0]>0.5]+"/"+Name[y_pred[j,0]>0.5])
plt.show()
print("True Category / Network Prediction")