-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathLinearRegressionGD.py
92 lines (66 loc) · 2.52 KB
/
LinearRegressionGD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# -*- coding: utf-8 -*-
"""
Implementation of an OLS linear regression model using the gradient
descent method.
Author: Faiyaz Hasan
Date Created: October 8, 2016
"""
import numpy as np
class LinearRegressionGD(object):
"""Linear regression analysis.
Parameters
----------
eta : float
Learning rate between 0.0 and 1.0.
n_iter : int
Number of passes over the training dataset.
Attributes
----------
w_ : 1d-array
Weights after fitting. Underscore after a variable name indicates
that the variable was not created on instantiation of the object.
cost_ : list
Cost function of sample batch and weight vector per epoch.
errors_ : list
List of errors after weight update per epoch
"""
def __init__(self, eta=0.001, n_iter=20):
self.eta = eta
self.n_iter = n_iter
def fit(self, X, y):
"""Fit training data according to the adaline algorithm.
Parameters
----------
X : {array-like}, shape = [n_samples, n_features]
Training dataset, where n_samples is the number of samples
and n_features is the number of features.
y : {array-like}, shape = [n_samples]
Binary classification of dataset.
Returns
-------
self : object
"""
self.w_ = np.zeros(1 + X.shape[1])
self.cost_ = []
self.errors_ = []
for i in range(self.n_iter):
err = 0
# compute errors per epoch
for j in range(X.shape[0]):
status = y[j] - self.predict(X[j, ])
err += int(status != 0.0)
# update weights
output = self.net_input(X)
errors = (y - output)
self.w_[1:] += self.eta*X.T.dot(errors)
self.w_[0] += self.eta*errors.sum()
cost = (errors**2).sum()/2.0
self.cost_.append(cost)
self.errors_.append(err)
return self
def net_input(self, X):
"""Calculate the dot product of the features and the weights. """
return np.dot(X, self.w_[1:]) + self.w_[0]
def predict(self, X):
"""Return prediction value."""
return self.net_input(X)