-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsaturday_history.py
73 lines (52 loc) · 2.66 KB
/
saturday_history.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import numpy as np
import itertools
from dipy.core import performance as pf
from dipy.core import track_learning as tl
from dipy.core import track_metrics as tm
from dipy.viz import fos
import pbc
import cPickle
import cProfile as profile
import pstats
path='/home/eg01/Data/PBC/pbc2009icdm'
G,hdr,R=pbc.load_training_set(path)
tracks=pbc.load_approximate_tracks(path,1,1)
#tracks=[t for (i,t) in enumerate(tracks) if i%25==0]
def test(bundle_list, divergence_threshold_list=[0.25], fibre_weight_list=[0.8],index_lists=False):
comments = open('/home/ian/tractarian/commentary.txt','w')
#reduced_hits = []
#for b in [1,2,3,4,5,6,7,8]:
for b in bundle_list:
#print 'Starting ...'
refindex = G[b]['indices'].index([R[b]])
ref = G[b]['tracks'][refindex]
#print 'Bundle %d (%s)' % (b,G[b]['label_name'])
print >> comments, 'Bundle %d (%s)' % (b,G[b]['label_name'])
#print 'Removing far tracks ...'
nearbundle,nearbundleindices = tl.rm_far_tracks(ref,tracks)
#print 'Entering cut planes ...'
hitdata = pf.cut_plane(nearbundle,ref)
for divergence_threshold in divergence_threshold_list:
for fibre_weight in fibre_weight_list:
#print 'Reducing hit data ...'
reduced_hitdata,heavy_weight_fibres = \
tl.threshold_hitdata(hitdata,divergence_threshold=divergence_threshold,fibre_weight=fibre_weight)
#print 'Starting ...'
#pbc.show_cut_color(reduced_hitdata,ref,bundle=G[b]['tracks'])
#reduced_hits += [reduced_hitdata]
green = set(G[b]['indices'])
blue = set([nearbundleindices[i] for i in heavy_weight_fibres])
nGB = len(green.intersection(blue))
nG = len(green.difference(blue))
nB = len(blue.difference(green))
#print 'DivThresh %f; FibWt %f' % (divergence_threshold, fibre_weight)
print >> comments, 'DivThresh %f; FibWt %f; Green %d; Blue %d; Green and blue %d; missed Green %d; stray Blue %d' % (divergence_threshold, fibre_weight, len(green),len(blue),nGB,nG,nB)
#print >> comments, 'DivThresh %f; FibWt %f' % (divergence_threshold, fibre_weight)
#print >> comments, 'Green %d; Blue %d; Green and blue %d; missed Green %d; stray Blue %d' \
# % (len(green),len(blue),nGB,nG,nB)
if index_list == True:
return green, blue
comments.close()
'''
if __name__=="__main__":
profile.run('test()','teststat')'''