forked from carykh/jumpcutter
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathjumpcutter.py
executable file
·330 lines (276 loc) · 14.2 KB
/
jumpcutter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#!/usr/bin/env python
from audiotsm import phasevocoder
from audiotsm.io.array import ArrayReader, ArrayWriter
from scipy.io import wavfile
from shutil import rmtree
from tqdm import tqdm as std_tqdm
from functools import partial
import numpy as np
import subprocess
import argparse
import re
import math
import os
import time
FFMPEG_PATH = 'ffmpeg'
tqdm = partial(std_tqdm,
bar_format=('{desc:<20} {percentage:3.0f}%'
'|{bar:10}|'
' {n_fmt:>6}/{total_fmt:>6} [{elapsed:^5}<{remaining:^5}, {rate_fmt}{postfix}]'))
# tqdm = std_tqdm
def _get_max_volume(s):
return max(-np.min(s), np.max(s))
def _is_valid_input_file(filename) -> bool:
"""
Check wether the input file is one that ffprobe recognizes, i.e. a video / audio / ... file.
If it does, check whether there exists an audio stream, as we could not perform the dynamic shortening without one.
:param filename: The full path to the input that is to be checked
:return: True if it is a file with an audio stream attached.
"""
command = [
'ffprobe', '-i', filename, '-hide_banner', '-loglevel', 'error',
'-select_streams', 'a', '-show_entries', 'stream=codec_type'
]
p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
outs, errs = None, None
try:
outs, errs = p.communicate(timeout=1)
except subprocess.TimeoutExpired:
p.kill()
outs, errs = p.communicate()
finally:
# If the file is no file that ffprobe recognizes we will get an error in the errors
# else wise we will obtain an output in outs if there exists at least one audio stream
return len(errs) == 0 and len(outs) > 0
def _input_to_output_filename(filename):
dot_index = filename.rfind(".")
return filename[:dot_index] + "_ALTERED" + filename[dot_index:]
def _create_path(s):
# assert (not os.path.exists(s)), "The filepath "+s+" already exists. Don't want to overwrite it. Aborting."
try:
os.mkdir(s)
except OSError:
assert False, "Creation of the directory failed." \
" (The TEMP folder may already exist. Delete or rename it, and try again.)"
def _delete_path(s): # Dangerous! Watch out!
try:
rmtree(s, ignore_errors=False)
for i in range(5):
if not os.path.exists(s):
return
time.sleep(0.01 * i)
except OSError:
print('Deletion of the directory {} failed'.format(s))
print(OSError)
# TODO maybe transition to use the time=... instead of frame=... as frame is not accessible when exporting audio only
def _run_timed_ffmpeg_command(command, **kwargs):
p = subprocess.Popen([FFMPEG_PATH, *command], stderr=subprocess.PIPE, universal_newlines=True, bufsize=1)
with tqdm(**kwargs) as t:
while p.poll() is None:
line = p.stderr.readline()
m = re.search(r'frame=.*?(\d+)', line)
if m is not None:
new_frame = int(m.group(1))
if t.total < new_frame:
t.total = new_frame
t.update(new_frame - t.n)
t.update(t.total - t.n)
def _get_tree_expression(chunks) -> str:
return '{}/TB/FR'.format(_get_tree_expression_rec(chunks))
def _get_tree_expression_rec(chunks) -> str:
"""
Build a 'Binary Expression Tree' for the ffmpeg pts selection
:param chunks: List of chunks that have the format [oldStart, oldEnd, newStart, newEnd]
:return: Binary tree expression to calculate the speedup for the given chunks
"""
if len(chunks) > 1:
split_index = int(len(chunks) / 2)
center = chunks[split_index]
return 'if(lt(N,{}),{},{})'.format(center[0],
_get_tree_expression_rec(chunks[:split_index]),
_get_tree_expression_rec(chunks[split_index:]))
else:
chunk = chunks[0]
local_speedup = (chunk[3] - chunk[2]) / (chunk[1] - chunk[0])
offset = - chunk[0] * local_speedup + chunk[2]
return 'N*{}{:+}'.format(local_speedup, offset)
def speed_up_video(
input_file: str,
output_file: str = None,
frame_rate: float = 30,
sample_rate: int = 44100,
silent_threshold: float = 0.03,
silent_speed: float = 5.0,
sounded_speed: float = 1.0,
frame_spreadage: int = 1,
audio_fade_envelope_size: int = 400,
temp_folder: str = 'TEMP') -> None:
"""
Speeds up a video file with different speeds for the silent and loud sections in the video.
:param input_file: The file name of the video to be sped up.
:param output_file: The file name of the output file. If not given will be 'input_file'_ALTERED.ext.
:param frame_rate: The frame rate of the given video. Only needed if not extractable through ffmpeg.
:param sample_rate: The sample rate of the audio in the video.
:param silent_threshold: The threshold when a chunk counts towards being a silent chunk.
Value ranges from 0 (nothing) - 1 (max volume).
:param silent_speed: The speed of the silent chunks.
:param sounded_speed: The speed of the loud chunks.
:param frame_spreadage: How many silent frames adjacent to sounded frames should be included to provide context.
:param audio_fade_envelope_size: Audio transition smoothing duration in samples.
:param temp_folder: The file path of the temporary working folder.
"""
# Set output file name based on input file name if none was given
if output_file is None:
output_file = _input_to_output_filename(input_file)
# Create Temp Folder
if os.path.exists(temp_folder):
_delete_path(temp_folder)
_create_path(temp_folder)
# Find out framerate and duration of the input video
command = [
'ffprobe', '-i', input_file, '-hide_banner', '-loglevel', 'error',
'-select_streams', 'v', '-show_entries', 'format=duration:stream=avg_frame_rate'
]
p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=1, universal_newlines=True)
std_out, err = p.communicate()
match_frame_rate = re.search(r'frame_rate=(\d*)/(\d*)', str(std_out))
if match_frame_rate is not None:
frame_rate = float(match_frame_rate.group(1)) / float(match_frame_rate.group(2))
# print(f'Found Framerate {frame_rate}')
match_duration = re.search(r'duration=([\d.]*)', str(std_out))
original_duration = 0.0
if match_duration is not None:
original_duration = float(match_duration.group(1))
# print(f'Found Duration {original_duration}')
# Extract the audio
command = [
'-i', input_file,
'-ab', '160k',
'-ac', '2',
'-ar', str(sample_rate),
'-vn', temp_folder + '/audio.wav',
'-hide_banner'
]
_run_timed_ffmpeg_command(command, total=int(original_duration * frame_rate), unit='frames',
desc='Extracting audio:')
wav_sample_rate, audio_data = wavfile.read(temp_folder + "/audio.wav")
audio_sample_count = audio_data.shape[0]
max_audio_volume = _get_max_volume(audio_data)
samples_per_frame = wav_sample_rate / frame_rate
audio_frame_count = int(math.ceil(audio_sample_count / samples_per_frame))
# Find frames with loud audio
has_loud_audio = np.zeros(audio_frame_count, dtype=bool)
for i in range(audio_frame_count):
start = int(i * samples_per_frame)
end = min(int((i + 1) * samples_per_frame), audio_sample_count)
audio_chunk = audio_data[start:end]
chunk_max_volume = float(_get_max_volume(audio_chunk)) / max_audio_volume
if chunk_max_volume >= silent_threshold:
has_loud_audio[i] = True
# Chunk the frames together that are quiet or loud
chunks = [[0, 0, 0]]
should_include_frame = np.zeros(audio_frame_count, dtype=bool)
for i in tqdm(range(audio_frame_count), desc='Finding chunks:', unit='frames'):
start = int(max(0, i - frame_spreadage))
end = int(min(audio_frame_count, i + 1 + frame_spreadage))
should_include_frame[i] = np.any(has_loud_audio[start:end])
if i >= 1 and should_include_frame[i] != should_include_frame[i - 1]: # Did we flip?
chunks.append([chunks[-1][1], i, should_include_frame[i - 1]])
chunks.append([chunks[-1][1], audio_frame_count, should_include_frame[audio_frame_count - 1]])
chunks = chunks[1:]
# Generate audio data with varying speed for each chunk
new_speeds = [silent_speed, sounded_speed]
output_pointer = 0
audio_buffers = []
for index, chunk in tqdm(enumerate(chunks), total=len(chunks), desc='Changing audio:', unit='chunks'):
audio_chunk = audio_data[int(chunk[0] * samples_per_frame):int(chunk[1] * samples_per_frame)]
reader = ArrayReader(np.transpose(audio_chunk))
writer = ArrayWriter(reader.channels)
tsm = phasevocoder(reader.channels, speed=new_speeds[int(chunk[2])])
tsm.run(reader, writer)
altered_audio_data = np.transpose(writer.data)
# smooth out transition's audio by quickly fading in/out
if altered_audio_data.shape[0] < audio_fade_envelope_size:
altered_audio_data[:] = 0 # audio is less than 0.01 sec, let's just remove it.
else:
premask = np.arange(audio_fade_envelope_size) / audio_fade_envelope_size
mask = np.repeat(premask[:, np.newaxis], 2, axis=1) # make the fade-envelope mask stereo
altered_audio_data[:audio_fade_envelope_size] *= mask
altered_audio_data[-audio_fade_envelope_size:] *= 1 - mask
audio_buffers.append(altered_audio_data / max_audio_volume)
end_pointer = output_pointer + altered_audio_data.shape[0]
start_output_frame = int(math.ceil(output_pointer / samples_per_frame))
end_output_frame = int(math.ceil(end_pointer / samples_per_frame))
chunks[index] = chunk[:2] + [start_output_frame, end_output_frame]
output_pointer = end_pointer
# print(chunks)
output_audio_data = np.concatenate(audio_buffers)
wavfile.write(temp_folder + "/audioNew.wav", sample_rate, output_audio_data)
# Cut the video parts to length
expression = _get_tree_expression(chunks)
filter_graph_file = open(temp_folder + "/filterGraph.txt", 'w')
filter_graph_file.write(f'fps=fps={frame_rate},setpts=')
filter_graph_file.write(expression.replace(',', '\\,'))
filter_graph_file.close()
command = [
'-i', input_file,
'-i', temp_folder + '/audioNew.wav',
'-filter_script:v', temp_folder + '/filterGraph.txt',
'-map', '0',
'-map', '-0:a',
'-map', '1:a',
'-c:a', 'aac',
output_file,
'-loglevel', 'warning',
'-stats',
'-y',
'-hide_banner'
]
_run_timed_ffmpeg_command(command, total=chunks[-1][3], unit='frames', desc='Generating final:')
_delete_path(temp_folder)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Modifies a video file to play at different speeds when there is sound vs. silence.')
parser.add_argument('-i', '--input_file', type=str, dest='input_file', nargs='+', required=True,
help='The video file(s) you want modified.'
' Can be one or more directories and / or single files.')
parser.add_argument('-o', '--output_file', type=str, dest='output_file',
help="The output file. Only usable if a single file is given."
" If not included, it'll just modify the input file name by adding _ALTERED.")
parser.add_argument('-t', '--silent_threshold', type=float, dest='silent_threshold',
help='The volume amount that frames\' audio needs to surpass to be consider "sounded".'
' It ranges from 0 (silence) to 1 (max volume). Defaults to 0.03')
parser.add_argument('-S', '--sounded_speed', type=float, dest='sounded_speed',
help="The speed that sounded (spoken) frames should be played at. Defaults to 1.")
parser.add_argument('-s', '--silent_speed', type=float, dest='silent_speed',
help="The speed that silent frames should be played at. Defaults to 5")
parser.add_argument('-fm', '--frame_margin', type=float, dest='frame_spreadage',
help="Some silent frames adjacent to sounded frames are included to provide context."
" This is how many frames on either the side of speech should be included. Defaults to 1")
parser.add_argument('-sr', '--sample_rate', type=float, dest='sample_rate',
help="Sample rate of the input and output videos. FFmpeg tries to extract this information."
" Thus only needed if FFmpeg fails to do so.")
parser.add_argument('-fr', '--frame_rate', type=float, dest='frame_rate',
help="Frame rate of the input and output videos. FFmpeg tries to extract this information."
" Thus only needed if FFmpeg fails to do so.")
files = []
for input_file in parser.parse_args().input_file:
if os.path.isfile(input_file):
files += [os.path.abspath(input_file)]
elif os.path.isdir(input_file):
files += [os.path.join(input_file, file) for file in os.listdir(input_file)]
args = {k: v for k, v in vars(parser.parse_args()).items() if v is not None}
del args['input_file']
if len(files) > 1 and 'output_file' in args:
del args['output_file']
# It appears as though nested progress bars are deeply broken
# with tqdm(files, unit='file') as progress_bar:
for index, file in enumerate(files):
if not _is_valid_input_file(file):
print(f"Skipping file {index + 1}/{len(files)} '{os.path.basename(file)}' as it is not a valid input file.")
continue
# progress_bar.set_description("Processing file '{}'".format(os.path.basename(file)))
print(f"Processing file {index + 1}/{len(files)} '{os.path.basename(file)}'")
local_options = dict(args)
local_options['input_file'] = file
speed_up_video(**local_options)