-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathrun.py
90 lines (80 loc) · 3.56 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from gpt_4.prompts.prompt_manipulation import generate_task as generate_task_manipulation
from gpt_4.prompts.prompt_distractor import generate_distractor
from gpt_4.prompts.prompt_locomotion import generate_task_locomotion
from manipulation.partnet_category import partnet_categories
import json
import time, datetime
import numpy as np
import os
import yaml
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--train', type=int, default=1)
parser.add_argument('--category', type=str, default=None)
args = parser.parse_args()
temperature_dict = {
"task_generation": 0.6,
"reward": 0.2,
"yaml": 0.3,
"size": 0.1,
"joint": 0,
"spatial_relationship": 0
}
model_dict = {
"task_generation": "gpt-4",
"reward": "gpt-4",
"yaml": "gpt-4",
"size": "gpt-4",
"joint": "gpt-4",
"spatial_relationship": "gpt-4"
}
### store information
### generate task, return config path
meta_path = "generated_tasks_release"
if not os.path.exists("data/{}".format(meta_path)):
os.makedirs("data/{}".format(meta_path))
time_string = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d-%H-%M-%S')
save_folder = "data/{}/meta-temperature-{}.json".format(meta_path, time_string)
with open(save_folder, 'w') as f:
json.dump(temperature_dict, f, indent=4)
save_folder = "data/{}/meta-model-{}.json".format(meta_path, time_string)
with open(save_folder, 'w') as f:
json.dump(model_dict, f, indent=4)
np.random.seed(int(time.time()))
gen_func = np.random.choice(['manipulation', 'locomotion'])
gen_func = 'manipulation' if args.category is not None else gen_func
if gen_func == 'manipulation':
if args.category is None:
object_category = partnet_categories[np.random.randint(len(partnet_categories))]
else:
object_category = args.category
all_task_config_paths = generate_task_manipulation(object_category, temperature_dict=temperature_dict, model_dict=model_dict, meta_path=meta_path)
for task_config_path in all_task_config_paths:
generate_distractor(task_config_path, temperature_dict=temperature_dict, model_dict=model_dict)
elif gen_func == 'locomotion':
all_task_config_paths = generate_task_locomotion(temperature_dict=temperature_dict, model_dict=model_dict, meta_path=meta_path)
if args.train:
for task_config_path in all_task_config_paths:
print("trying to learn skill: ", task_config_path)
try:
if gen_func == 'manipulation':
print("task_config_path: ", task_config_path)
with open(task_config_path, 'r') as f:
task_config = yaml.safe_load(f)
solution_path = None
for obj in task_config:
if "solution_path" in obj:
solution_path = obj["solution_path"]
break
## run RL once for each substep
os.system("python execute.py --task_config_path {}".format(task_config_path))
## or run RL multiple times for each substep and pick the best result for next substep
# os.system("python execute_long_horizon.py --task_config_path {}".format(task_config_path))
else:
os.system("python execute_locomotion.py --task_config_path {} & ".format(task_config_path))
except Exception as e:
print("=" * 20, "an error occurred", "=" * 20)
print("an error occurred: ", e)
print("=" * 20, "an error occurred", "=" * 20)
print("failed to execute task: ", task_config_path)
continue