forked from UFund-Me/Qbot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharoon_strategy.py
97 lines (90 loc) · 4.68 KB
/
aroon_strategy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
'''
Author: Charmve [email protected]
Date: 2023-05-08 22:08:13
LastEditors: Charmve [email protected]
LastEditTime: 2023-05-08 22:08:13
FilePath: /Qbot/pytrader/strategies/aroon_strategy.py
Version: 1.0.1
Blogs: charmve.blog.csdn.net
GitHub: https://github.com/Charmve
Description:
Copyright (c) 2023 by Charmve, All Rights Reserved.
Licensed under the MIT License.
'''
class AroonStrategy(TemplateStrategy):
params = (("start_date", None), ('end_date', None),)
def __init__(self):
super().__init__()
# 基本配置
self.max_hold = 5
self.this_month = self.params.start_date.month
total_bond_code = []
for this_data in self.datas:
if type(this_data).__name__ == "StockData":
total_bond_code.append(this_data._name)
self.total_bond_code = total_bond_code
self.vic_dict = {'801210.SI': 0, '801110.SI': 1, '801750.SI': 2, '801120.SI': 3, '801890.SI': 4, '801080.SI': 5,
'801200.SI': 6, '801140.SI': 7, '801160.SI': 8, '801730.SI': 9, '801010.SI': 10,
'801130.SI': 11, '801760.SI': 12, '801770.SI': 13, '801050.SI': 14, '801040.SI': 15,
'801180.SI': 16, '801720.SI': 17, '801710.SI': 18, '801030.SI': 19, '801880.SI': 20,
'801170.SI': 21, '801790.SI': 22, '801150.SI': 23, '801230.SI': 24, '801740.SI': 25,
'801950.SI': 26, '801780.SI': 27}
def next(self):
"""最核心的触发策略"""
hold_bond_name = [_p._name for _p in self.broker.positions if self.broker.getposition(_p).size > 0] # 查看持仓
# 计算指标
_candidate_dict = {}
for _candidate_code in self.total_bond_code:
_candidate_dict[_candidate_code] = {
"aroondown": self.getdatabyname(_candidate_code).aroondown[0],
"aroonup": self.getdatabyname(_candidate_code).aroonup[0],
}
candidate_df = pd.DataFrame(_candidate_dict).T
candidate_df['aroo_energy'] = candidate_df['aroondown'] + candidate_df['aroonup']
candidate_df['aroo_mines'] = candidate_df['aroonup'] - candidate_df['aroondown']
candidate_df = pd.merge(candidate_df, pd.DataFrame(self.vic_dict, index=['rank']).T,
left_index=True, right_index=True)
candidate_df = candidate_df.sort_values(['aroo_mines', "rank"], ascending=[False, True])
if candidate_df['aroo_energy'].sum() == 0:
return
if len(hold_bond_name) < self.max_hold:
self.get_buy_bond(candidate_df, self.max_hold - len(hold_bond_name))
# 卖出的逻辑
for _index, _series in candidate_df.iterrows():
if _index in hold_bond_name:
if _series['aroonup'] < _series['aroondown']:
self.sell(data=_index, size=self.getpositionbyname(_index).size,
valid=self.getdatabyname(_index).datetime.date(1))
def get_buy_bond(self, candidate_df, buy_num):
hold_bond_name = [_p._name for _p in self.broker.positions if self.broker.getposition(_p).size > 0]
for index, series in candidate_df.iterrows():
if series["aroo_energy"] <= 50: # 当 AroonDown + AroonUp > 50时才执行判操作
continue
if index in hold_bond_name:
continue
buy_data = self.getdatabyname(index)
if len(buy_data) >= buy_data.buflen():
continue
if series['aroonup'] > series['aroondown']:
buy_cost_value = self.broker.getcash() / (self.max_hold - len(hold_bond_name)) * (
1 - self.broker.comminfo[None].p.commission)
buy_size = buy_cost_value / self.getdatabyname(index).close[0]
self.buy(data=buy_data, size=buy_size, exectype=bt.Order.Limit,
price=buy_data.close[0],
valid=buy_data.datetime.date(1))
logger.debug("买入 {} size:{} 预计费用:{}".format(index, buy_size, buy_cost_value))
buy_num -= 1
if buy_num == 0:
break
def stop(self):
# 绘制净值曲线
wealth_curve_data = {}
for _k, _v in self.value_record.items():
wealth_curve_data[_k] = _v / self.broker.startingcash
self.plot_wealth_curve(wealth_curve_data, "arron_{}_{}".format(
self.params.start_date.strftime("%Y-%m-%d"), self.params.end_date.strftime("%Y-%m-%d")))
# 最终结果
daily_return = cal_daily_return(pd.Series(self.value_record))
_, record_dict = cal_rolling_feature(daily_return)
print(record_dict)
print('a')