forked from UFund-Me/Qbot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperformance.py
executable file
·76 lines (64 loc) · 2.52 KB
/
performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from datetime import datetime
import pandas as pd
class PerformanceUtils(object):
def rate2equity(self, df_rates):
df = df_rates.copy(deep=True)
df.dropna(inplace=True)
for col in df.columns:
df[col] = (df[col] + 1).cumprod()
return df
def equity2rate(self, df_equity):
df = df_equity.copy(deep=True)
df = df.pct_change()
return df
def calc_equity(self, df_equity):
df_rates = self.equity2rate(df_equity)
return self.calc_rates(df_rates)
def calc_rates(self, df_rates):
df_equity = self.rate2equity(df_rates)
df_rates.dropna(inplace=True)
df_equity.dropna(inplace=True)
# 累计收益率,年化收益
count = len(df_rates)
accu_return = round(df_equity.iloc[-1] - 1, 3)
annu_ret = round((accu_return + 1) ** (252 / count) - 1, 3)
# 标准差
std = round(df_rates.std() * (252 ** 0.5), 3)
# 夏普比
sharpe = round(annu_ret / std, 3)
# 最大回撤
mdd = round((df_equity / df_equity.expanding(min_periods=1).max()).min() - 1, 3)
ret_2_mdd = round(annu_ret / abs(mdd), 3)
ratios = [accu_return, annu_ret, std, sharpe, mdd, ret_2_mdd]
# df_ratio存放这里计算结果
df_ratios = pd.concat(ratios, axis=1)
# df_ratios.index = list(df_rates.columns)
df_ratios.columns = ["累计收益", "年化收益", "波动率", "夏普比", "最大回撤", "年化收益与最大回撤比"]
# 相关系数矩阵
df_corr = round(df_equity.corr(), 2)
start_dt = df_rates.index[0]
end_dt = df_rates.index[-1]
if isinstance(start_dt, str):
start_year = int(start_dt[:4])
end_year = int(end_dt[:4])
df_equity["date"] = df_equity.index
df_equity.index = df_equity["date"].apply(
lambda x: datetime.strptime(x, "%Y%m%d")
)
del df_equity["date"]
else:
start_year = start_dt[:4]
end_year = end_dt.year
years = []
for year in range(start_year, end_year + 1):
sub_df = df_equity.loc[str(year)]
if len(sub_df) <= 3:
continue
year_se = round(sub_df.iloc[-1] / sub_df.iloc[0] - 1, 3)
year_se.name = str(year)
years.append(year_se)
if len(years):
df_years = pd.concat(years, axis=1)
else:
df_years = None
return df_ratios, df_corr, df_years