forked from cmougan/WRI_WellBeing_Data_Layer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathosm_data_extraction.py
87 lines (67 loc) · 3.4 KB
/
osm_data_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import pandas as pd
import geopandas as gpd
import contextily as ctx
import matplotlib.pyplot as plt
import osmnx as ox
import networkx
from shapely.geometry import mapping, Polygon
import os
from dotenv import load_dotenv
load_dotenv()
def extract_district_dataframe(countryGDF: gpd.geodataframe.GeoDataFrame, district_name: str) -> gpd.geodataframe.GeoDataFrame:
district_gdf = countryGDF[countryGDF['NAME_2'] == district_name]
district_gdf = district_gdf[['NAME_2', 'geometry']]
return district_gdf
def district_extents(district_gdf: gpd.geodataframe.GeoDataFrame) -> (float, float, float, float):
district_bbox = district_gdf.bounds
w, s, e, n = (district_bbox.minx.values[0], district_bbox.miny.values[0],
district_bbox.maxx.values[0], district_bbox.maxy.values[0])
return (w, s, e, n)
def plot_district_boundary_on_osm_tile(district_gdf: gpd.geodataframe.GeoDataFrame, figsize: int, linewidth: float, zoom: int):
district_ax = district_gdf.plot(figsize=(
figsize, figsize), alpha=0.5, edgecolor='k', facecolor="none", linewidth=linewidth)
return ctx.add_basemap(district_ax, crs=district_gdf.crs, zoom=zoom)
def write_district_osm_tile(district_gdf: gpd.geodataframe.GeoDataFrame, filename: str) -> bool:
(w, s, e, n) = district_extents(district_gdf)
img, ex = ctx.bounds2raster(w, s, e, n, ll=True, path=os.environ.get(
"OSM_DIR") + filename, source=ctx.providers.CartoDB.Positron)
if img.size != 0:
return True
else:
return False
def plot_district_tif(filename: str, figsize: int):
import rasterio
from rasterio.plot import show
district_tif = rasterio.open(filename)
plt.imshow(district_tif.read(1))
plt.rcParams["figure.figsize"] = (figsize, figsize)
plt.rcParams["grid.color"] = 'k'
plt.rcParams["grid.linestyle"] = ":"
plt.rcParams["grid.linewidth"] = 0.5
plt.rcParams["grid.alpha"] = 0.5
plt.show()
def create_district_knots_and_edges_model(district_gdf: gpd.geodataframe.GeoDataFrame) -> (Polygon, networkx.classes.multidigraph.MultiDiGraph):
g = [i for i in district_gdf.geometry]
district_all_coords = list(mapping(g[0])["coordinates"][0])
district_poly = Polygon(district_all_coords)
district_graph = ox.graph_from_polygon(district_poly)
return district_poly, district_graph
def create_knots_and_edges_from_boundary(district_voronoi_gdf: gpd.geodataframe.GeoDataFrame, cs: str) -> (Polygon, networkx.classes.multidigraph.MultiDiGraph):
district_poly = district_voronoi_gdf.unary_union
ox.config(overpass_settings=cs)
district_graph = ox.graph_from_polygon(
district_poly, truncate_by_edge=False, network_type='all', retain_all=True, )
return (district_poly, district_graph)
def extract_osm_csv(district_poly: Polygon, tags: dict) -> pd.DataFrame:
"""
Returns the data frame after extraction and writes the dataframe to csv file
"""
district_osmdf = ox.geometries_from_polygon(district_poly, tags=tags)
return district_osmdf
def plot_dhs_data(shapefile: str, dhs_cleanded_csv_file: str, figsize: int):
ctry0_gpd = gpd.read_file(shapefile)
dhs_df = pd.read_csv(dhs_cleanded_csv_file)
dhs_points_gdf = gpd.GeoDataFrame(dhs_df, geometry=gpd.points_from_xy(
dhs_df['LONGNUM'], dhs_df['LATNUM']), crs='EPSG:4326')
dhs_ax = dhs_points_gdf.plot(figsize=(figsize, figsize))
ctx.add_basemap(dhs_ax, crs=ctry0_gpd.crs, zoom=8)