-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_image.py
262 lines (207 loc) · 10.3 KB
/
main_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
os.environ['CUDA_VISIBLE_DEVICES'] = "2"
import os.path
from sklearn.utils import shuffle
import torch
from sklearn.metrics import classification_report
from torch.utils.data import Dataset, DataLoader,TensorDataset,random_split,SubsetRandomSampler, ConcatDataset
from torchvision import transforms
import torch.nn.init
import pandas as pd
from torch import nn
import numpy as np
import torch.optim as optim
import torch.nn.init
from sklearn.metrics import roc_auc_score
import copy
from utils import *
from models import *
from dataloader import *
def train_model_binary_classification(model, train_dataloaders, val_dataloaders, criterion, optimizer, num_epochs=5):
best_acc = 0.0
best_loss = 0.0
best_f1 = 0.0
best_precision = 0.0
best_recall = 0.0
best_epoch_num = 0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch+1, num_epochs))
print('-' * 10)
##################### train ##########################
model.train()
running_loss = 0.0
running_corrects = 0
for i, (_, image, labels) in enumerate(train_dataloaders):
labels = labels.to(device)
image = image.to(device)
logits = model(image)
loss = criterion(logits, labels)
outputs = torch.sigmoid(logits)
optimizer.zero_grad()
loss.backward()
optimizer.step()
preds = outputs.reshape(-1).round()
running_loss += loss.item() * labels.size(0)
running_corrects += torch.sum(preds == labels.reshape(-1))
epoch_loss = running_loss / len(train_dataset)
epoch_acc = running_corrects.double() / len(train_dataset)
print('train loss: {:.4f}, acc: {:.4f}'.format(epoch_loss, epoch_acc))
##################### validation ##########################
model.eval()
running_loss = 0.0
running_corrects = 0
predicted_labels = []
predicted_probs = []
predicted_text_ids = []
gold_labels = []
with torch.no_grad():
for i, (text_ids, image, labels) in enumerate(val_dataloaders):
labels = labels.to(device)
image = image.to(device)
logits = model(image)
loss = criterion(logits, labels)
outputs = torch.sigmoid(logits)
preds = outputs.reshape(-1).round()
running_loss += loss.item() * labels.size(0)
running_corrects += torch.sum(preds == labels.reshape(-1))
predicted_text_ids += list(text_ids)
predicted_labels += preds.detach().cpu().tolist()
predicted_probs += outputs.reshape(-1).detach().cpu().tolist()
gold_labels += labels.reshape(-1).detach().cpu().tolist()
epoch_loss = running_loss / len(val_dataset)
# epoch_acc = running_corrects.double() / len(val_dataset)
epoch_metrics = classification_report(gold_labels, predicted_labels, output_dict=True, digits=4)
epoch_f1 = epoch_metrics["1.0"]['f1-score']
epoch_precision = epoch_metrics["1.0"]['precision']
epoch_recall = epoch_metrics["1.0"]['recall']
epoch_acc = epoch_metrics["accuracy"]
is_best_epoch = False
if best_f1 <= epoch_f1:
best_f1 = epoch_f1
best_acc = epoch_acc
best_loss = epoch_loss
best_precision = epoch_precision
best_recall = epoch_recall
best_epoch_num = epoch
is_best_epoch = True
predict_df = pd.DataFrame({"ids":predicted_text_ids, "gold_labels":gold_labels, "predicted_labels":predicted_labels, "probabilities": predicted_probs})
predict_df.to_csv(os.path.join(args.exp_dir, f"results.csv"), index=False)
checkpoint_name = os.path.join(args.exp_dir, f'model_epoch_{epoch+1}.pth.tar')
save_checkpoint_nofold(args, {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_f1': best_f1,
'optimizer': optimizer.state_dict(),
}, filename=checkpoint_name, is_best=is_best_epoch, save_best_only=True)
print('val loss: {:.4f}, acc: {:.4f}, f1: {:.4f}, precision: {:.4f}, recall: {:.4f}'.format(epoch_loss, epoch_acc, epoch_f1, epoch_precision, epoch_recall))
print('best loss: {:.4f}, acc: {:.4f}, f1: {:.4f}, precision: {:.4f}, recall: {:.4f}, epoch {}'.format(best_loss, best_acc, best_f1, best_precision, best_recall, best_epoch_num+1))
print(classification_report(gold_labels, predicted_labels, digits=4))
return best_epoch_num
def predict(model, test_dataloaders, criterion, best_epoch_num):
print("\n######## test ########")
checkpoint = torch.load(os.path.join(args.exp_dir, f'model_best.pth.tar'))
model.load_state_dict(checkpoint['state_dict'])
model.to(device)
model.eval()
running_loss = 0.0
running_corrects = 0
predicted_labels = []
predicted_probs = []
predicted_text_ids = []
gold_labels = []
with torch.no_grad():
for i, (text_ids, image, labels) in enumerate(test_dataloaders):
labels = labels.to(device)
image = image.to(device)
logits = model(image)
loss = criterion(logits, labels)
outputs = torch.sigmoid(logits)
preds = outputs.reshape(-1).round()
running_loss += loss.item() * labels.size(0)
running_corrects += torch.sum(preds == labels.reshape(-1))
predicted_text_ids += list(text_ids)
predicted_labels += preds.detach().cpu().tolist()
predicted_probs += outputs.reshape(-1).detach().cpu().tolist()
gold_labels += labels.reshape(-1).detach().cpu().tolist()
epoch_loss = running_loss / len(test_dataset)
# epoch_acc = running_corrects.double() / len(val_dataset)
epoch_metrics = classification_report(gold_labels, predicted_labels, output_dict=True, digits=4)
epoch_f1 = epoch_metrics["1.0"]['f1-score']
epoch_precision = epoch_metrics["1.0"]['precision']
epoch_recall = epoch_metrics["1.0"]['recall']
epoch_acc = epoch_metrics["accuracy"]
macro_f1 = (epoch_metrics["1.0"]['f1-score'] + epoch_metrics["0.0"]['f1-score']) / 2
auc_score = roc_auc_score(gold_labels, predicted_labels)
predict_df = pd.DataFrame(
{"ids": predicted_text_ids, "gold_labels": gold_labels, "predicted_labels": predicted_labels,
"probabilities": predicted_probs})
predict_df.to_csv(os.path.join(args.exp_dir, f"test_best-epoch_{best_epoch_num + 1}_results.csv"), index=False)
print(
'test loss: {:.4f}, acc: {:.4f}, f1: {:.4f}, precision: {:.4f}, recall: {:.4f}, macro_f1: {:.4f}, auc_score: {:.4f}'.format(
epoch_loss, epoch_acc,
epoch_f1,
epoch_precision,
epoch_recall, macro_f1, auc_score))
print(classification_report(gold_labels, predicted_labels, digits=4))
if __name__ == '__main__':
train_transform = transforms.Compose([
transforms.Resize((224,224)),
# transforms.RandomResizedCrop((224, 224)),
# transforms.RandomAffine(0, shear=10, scale=(0.8,1.2)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
val_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
args = get_argparser().parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.manual_seed(args.seed)
# create experiment dirs
exp_name = get_exp_name_nofold(args)
old_path = args.exp_dir
args.exp_dir = f"{old_path}/{exp_name}"
make_dir(args.exp_dir)
sys.stdout = Logger(os.path.join(args.exp_dir, "train.log"), sys.stdout)
sys.stderr = Logger(os.path.join(args.exp_dir, "error.log"), sys.stderr)
# initial model and optimizer
# binary classification
if args.img_model == 0:
init_model = ImageModelResNet50(out_dim=1, freeze_model=args.freeze_model)
elif args.img_model == 1:
init_model = ImageModelResNet101(out_dim=1, freeze_model=args.freeze_model)
else:
init_model = ImageModelVGG16(out_dim=1, freeze_model=args.freeze_model)
criterion = nn.BCEWithLogitsLoss()
# results
f1_list = []
precision_list = []
recall_list = []
acc_list = []
for dataset_name in ['gun_control', 'abortion']:
print(f"\n##################### {dataset_name} ##########################\n")
args.exp_dir = f"{old_path}/{exp_name}/{dataset_name}"
make_dir(args.exp_dir)
df = pd.read_csv(os.path.join(args.data_dir, dataset_name + '_train.csv'), index_col=0)
df = shuffle(df, random_state=args.seed)
df_test = pd.read_csv(os.path.join(args.data_dir, dataset_name + '_dev.csv'), index_col=0)
test_annotation = df_test.reset_index()
test_dataset = ImageDataset(args, annotation=test_annotation, root_dir=os.path.join(args.data_dir, 'images/' + dataset_name), transform=val_transform)
test_dataloaders = DataLoader(test_dataset, collate_fn=collate_fn, batch_size=args.batch_size)
dataset_len = len(df)
train_annotation = df[:int(dataset_len * 0.8)]
train_annotation = train_annotation.reset_index()
val_annotation = df[int(dataset_len * 0.8):]
val_annotation = val_annotation.reset_index()
train_dataset = ImageDataset(args, annotation=train_annotation, root_dir=os.path.join(args.data_dir, 'images/' + dataset_name), transform=train_transform)
val_dataset = ImageDataset(args, annotation=val_annotation, root_dir=os.path.join(args.data_dir, 'images/' + dataset_name), transform=val_transform)
train_dataloaders = DataLoader(train_dataset, collate_fn=collate_fn, batch_size=args.batch_size)
val_dataloaders = DataLoader(val_dataset, collate_fn=collate_fn, batch_size=args.batch_size)
model = copy.deepcopy(init_model)
model.to(device)
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr)
best_epoch_num = train_model_binary_classification(model, train_dataloaders, val_dataloaders, criterion, optimizer, args.num_epochs)
predict(model, test_dataloaders, criterion, best_epoch_num)