-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
132 lines (114 loc) · 5.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import time
from options.train_options import TrainOptions
from data import CreateDataLoader
from models import create_model
from util.util import confusion_matrix, getScores, tensor2labelim, tensor2im, print_current_losses
import numpy as np
import random
import torch
import cv2
from tensorboardX import SummaryWriter
if __name__ == '__main__':
train_opt = TrainOptions().parse()
np.random.seed(train_opt.seed)
random.seed(train_opt.seed)
torch.manual_seed(train_opt.seed)
torch.cuda.manual_seed(train_opt.seed)
train_data_loader = CreateDataLoader(train_opt)
train_dataset = train_data_loader.load_data()
train_dataset_size = len(train_data_loader)
print('#training images = %d' % train_dataset_size)
valid_opt = TrainOptions().parse()
valid_opt.phase = 'val'
valid_opt.batch_size = 1
valid_opt.num_threads = 1
valid_opt.serial_batches = True
valid_opt.isTrain = False
valid_data_loader = CreateDataLoader(valid_opt)
valid_dataset = valid_data_loader.load_data()
valid_dataset_size = len(valid_data_loader)
print('#validation images = %d' % valid_dataset_size)
writer = SummaryWriter()
model = create_model(train_opt, train_dataset.dataset)
model.setup(train_opt)
total_steps = 0
tfcount = 0
F_score_max = 0
for epoch in range(train_opt.epoch_count, train_opt.nepoch + 1):
### Training on the training set ###
model.train()
epoch_start_time = time.time()
iter_data_time = time.time()
epoch_iter = 0
train_loss_iter = []
for i, data in enumerate(train_dataset):
iter_start_time = time.time()
if total_steps % train_opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
total_steps += train_opt.batch_size
epoch_iter += train_opt.batch_size
model.set_input(data)
model.optimize_parameters()
if total_steps % train_opt.print_freq == 0:
tfcount = tfcount + 1
losses = model.get_current_losses()
train_loss_iter.append(losses["segmentation"])
t = (time.time() - iter_start_time) / train_opt.batch_size
print_current_losses(epoch, epoch_iter, losses, t, t_data)
# There are several whole_loss values shown in tensorboard in one epoch,
# to help better see the optimization phase
writer.add_scalar('train/whole_loss', losses["segmentation"], tfcount)
iter_data_time = time.time()
mean_loss = np.mean(train_loss_iter)
# One average training loss value in tensorboard in one epoch
writer.add_scalar('train/mean_loss', mean_loss, epoch)
palet_file = 'datasets/palette.txt'
impalette = list(np.genfromtxt(palet_file,dtype=np.uint8).reshape(3*256))
tempDict = model.get_current_visuals()
rgb = tensor2im(tempDict['rgb_image'])
tdisp = tensor2im(tempDict['tdisp_image'])
label = tensor2labelim(tempDict['label'], impalette)
output = tensor2labelim(tempDict['output'], impalette)
image_numpy = np.concatenate((rgb, tdisp, label, output), axis=1)
image_numpy = image_numpy.astype(np.float32) / 255
writer.add_image('Epoch' + str(epoch), image_numpy, dataformats='HWC') # show training images in tensorboard
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, train_opt.nepoch, time.time() - epoch_start_time))
model.update_learning_rate()
### Evaluation on the validation set ###
model.eval()
valid_loss_iter = []
epoch_iter = 0
conf_mat = np.zeros((valid_dataset.dataset.num_labels, valid_dataset.dataset.num_labels), dtype=np.float)
with torch.no_grad():
for i, data in enumerate(valid_dataset):
model.set_input(data)
model.forward()
model.get_loss()
epoch_iter += valid_opt.batch_size
gt = model.label.cpu().int().numpy()
_, pred = torch.max(model.output.data.cpu(), 1)
pred = pred.float().detach().int().numpy()
# Resize images to the original size for evaluation
image_size = model.get_image_oriSize()
oriSize = (image_size[0].item(), image_size[1].item())
gt = np.expand_dims(cv2.resize(np.squeeze(gt, axis=0), oriSize, interpolation=cv2.INTER_NEAREST), axis=0)
pred = np.expand_dims(cv2.resize(np.squeeze(pred, axis=0), oriSize, interpolation=cv2.INTER_NEAREST), axis=0)
conf_mat += confusion_matrix(gt, pred, valid_dataset.dataset.num_labels)
losses = model.get_current_losses()
valid_loss_iter.append(model.loss_segmentation)
print('valid epoch {0:}, iters: {1:}/{2:} '.format(epoch, epoch_iter, len(valid_dataset) * valid_opt.batch_size), end='\r')
avg_valid_loss = torch.mean(torch.stack(valid_loss_iter))
globalacc, pre, recall, F_score, iou = getScores(conf_mat)
# Record performance on the validation set
writer.add_scalar('valid/loss', avg_valid_loss, epoch)
writer.add_scalar('valid/global_acc', globalacc, epoch)
writer.add_scalar('valid/pre', pre, epoch)
writer.add_scalar('valid/recall', recall, epoch)
writer.add_scalar('valid/F_score', F_score, epoch)
writer.add_scalar('valid/iou', iou, epoch)
# Save the best model according to the F-score, and record corresponding epoch number in tensorboard
if F_score > F_score_max:
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps))
model.save_networks('best')
F_score_max = F_score
writer.add_text('best model', str(epoch))