-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
79 lines (61 loc) · 2.59 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import glob
import keras
import scipy
import numpy as np
import os.path
import random
import imageio
from config import *
# List avaiable sequences
def prepare_data(directory):
sequences = []
dirs = glob.glob(directory)
for i in range(len(dirs)):
dir_name = dirs[i] + "/*"
list = glob.glob(dir_name)
sequences.append(sorted(list))
return sequences
def open_image(path):
image = scipy.misc.imread(path).astype(np.float)
subimages = np.split(image / 255, input + output, axis=1)
return [np.stack(augment(subimages[output:]), axis=-1) * 2 - 1, np.stack(subimages[:output], axis=-1)]
# Load image sequences
def load(sequence, subsequence_length):
images = [open_image(seq) for seq in sequence]
x = []
y = []
for i in range(len(sequence) - subsequence_length + 1):
local_x = [images[i+j][0] for j in range(subsequence_length)]
local_y = [images[i+j][1] for j in range(subsequence_length)]
x.append(np.stack([np.stack(local_x, axis=0)], axis=0))
y.append(np.stack([np.stack(local_y, axis=0)], axis=0))
return x, y
def augment(sequence):
return [apply_contrast(apply_gaussian_noise(resize(s))) for s in sequence]
def resize(image):
offset = 8
h1 = int(np.ceil(np.random.uniform(1e-2, offset)))
w1 = int(np.ceil(np.random.uniform(1e-2, offset)))
out = np.zeros((size + 2*offset, size + 2*offset))
out[offset:offset+size, offset:offset+size] = image
return out[h1:h1+size, w1:w1+size]
def apply_contrast(image):
# Apply random brightness but keep values in [0, 1]
# We apply a quadratic function with the form y = ax^2 + bx
# Visualization: https://www.desmos.com/calculator/zzz75gguna
delta = random.uniform(-0.04, 0.04)
a = -4 * delta
b = 1 - a
return a * (image*image) + b * (image)
def apply_gaussian_noise(image):
# Apply gaussian noise but keep values in [0, 1]
random_value = random.uniform(-0.01, 0.01)
return np.clip(image + (random_value), 0.0, 1.0)
def re_shape(arr):
return np.reshape(arr, (1, sequence_length, size, size, output))
def save_image(inp, gt, generated, path):
all = np.concatenate((inp, gt, generated), axis=4)
all = np.squeeze(all)
all = np.squeeze(np.concatenate(np.split(all, sequence_length, axis=0), axis=1))
all = np.squeeze(np.concatenate(np.split(all, input + output + output, axis=2), axis=1))
imageio.imwrite(path, (np.clip(all, 0.0, 1.0) * 255).astype(np.uint8))