-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathconfig.py
87 lines (66 loc) · 3.12 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# -*- coding: utf-8 -*-
"""
@author: HYPJUDY 2019/4/15
https://github.com/HYPJUDY
Decoupling Localization and Classification in Single Shot Temporal Action Detection
-----------------------------------------------------------------------------------
Configuration file
"""
from os.path import join
import pandas as pd
class Config(object):
"""
define a class to store parameters,
"""
def __init__(self):
# common information
self.feature_path = "data/THUMOS14/feature/"
self.train_split_set = 'val'
self.test_split_set = 'test'
self.window_size = 512
self.batch_size = 48
self.input_steps = 128
self.num_classes = 21
self.class_real = [7, 9, 12, 21, 22, 23, 24, 26, 31, 33,
36, 40, 45, 51, 68, 79, 85, 92, 93, 97]
self.layers_name = ['AL1', 'AL2', 'AL3']
self.scale = {'AL1': 1. / 16, 'AL2': 1. / 8, 'AL3': 1. / 4}
self.num_anchors = {'AL1': 16, 'AL2': 8, 'AL3': 4}
self.aspect_ratios = {'AL1': [0.5, 0.75, 1, 1.5, 2],
'AL2': [0.5, 0.75, 1, 1.5, 2],
'AL3': [0.5, 0.75, 1, 1.5, 2]}
self.num_dbox = {'AL1': 5, 'AL2': 5, 'AL3': 5}
self.training_epochs = 31
self.learning_rates = [0.0001] * 30 + [0.00001] # the 31th epoch is crucial
self.p_class = 1
self.p_loc = 10
self.p_conf = 10
self.negative_ratio = 1
self.seed = 1129
self.nms_threshold = 0.2
# when process results, remove confident negative anchors by previous
self.filter_neg_threshold = 0.98
# when process results, remove confident low overlap (conf) anchors by previous
self.filter_conf_threshold = 0.1
# used in load_data.py window_data function to choose window
self.overlap_ratio_threshold = 0.9
self.save_predict_result = True
self.initialize = True
# True: train from scratch
# (or delete the corresponding params files in models_dir);
# False: restore from pretrained model
self.steps = 30 # defined by steps
self.outdf_columns = ['video_name', 'start', 'conf', 'xmin', 'xmax', 'score_0', 'score_1', 'score_2',
'score_3', 'score_4', 'score_5', 'score_6', 'score_7', 'score_8',
'score_9', 'score_10', 'score_11', 'score_12', 'score_13', 'score_14',
'score_15', 'score_16', 'score_17', 'score_18', 'score_19', 'score_20']
def get_anno_ath(split_set):
return join('data', 'thumos14', split_set)
def get_anno_df(anno_path, split_set):
return pd.read_csv(join(anno_path, 'thumos14_' + split_set + '_annotation.csv'))
def get_data_x_path(feature_path, split_set, mode, data_x_type):
return join(feature_path, split_set, mode + 'DataX' + data_x_type)
def get_models_dir(mode, pretrain_dataset, method):
return join('models', mode + '_' + pretrain_dataset + '_' + method)
def get_predict_result_path(mode, pretrain_dataset, method):
return join('results', 'predict_' + mode + '_' + pretrain_dataset + '_' + method + '.csv')