-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
541 lines (470 loc) · 24.9 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
import copy
import json
import argparse
import os
import random
import re
import numpy as np
import torch.backends.cudnn as cudnn
import more_itertools
from torch import nn
from torch.utils.data import Dataset
from tqdm import tqdm
from dataset.call_gpt_api import openai_chat_create
from dataset.visualize_data_in_html import visualize_dialogues_in_html, visualize_VLtasks_in_html
from sparkles.common.config import Config
from sparkles.common.registry import registry
from sparkles.conversation.conversation_sparkleschat import Chat, CONV_VISION
import torch
from PIL import Image
class MiniGPT4:
def __init__(self, cfg, gpu_ids) -> None:
model_config = cfg.model_cfg
devices = ['cuda:{}'.format(id) for id in gpu_ids]
model_config.device_8bit = devices[0]
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to(devices[0])
if len(devices) > 1: # If there is more than one device, use DataParallel
model = nn.DataParallel(model, device_ids=devices)
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
self.chat = Chat(model, vis_processor, device = devices[0])
def generate(self, prompt, img_paths=None, num_beams=1, temperature=1.0, *kargs):
chat_state = CONV_VISION.copy()
img_list = []
if img_paths is not None:
for img_path in img_paths:
image = Image.open(img_path).convert('RGB')
self.chat.upload_img(image, chat_state, img_list)
self.chat.ask(prompt, chat_state)
llm_message = self.chat.answer(conv=chat_state,
img_list=img_list,
num_beams=num_beams,
temperature=temperature,
max_new_tokens=1000,
max_length=2000)[0]
return llm_message
class BISONDataset(Dataset):
def __init__(
self,
dataset_root,
data_from=0,
data_to=50,
):
self.options = "IMAGE#1/IMAGE#2"
self.prompt_template = """Carefully examine the two similar images of IMAGE#1<Img><ImageHere></Img> and IMAGE#2<Img><ImageHere></Img>.
Given the following caption, you must select which of two images best matches the caption.
The caption is: '{}'.
This task requires fine-grained visual reasoning between the caption and each image. Let's think step by step.
Please start your response with "Let's think step by step." and end with "Therefore, the answer (IMAGE#1 or IMAGE#2) is"."""
self.image_dir = f"{dataset_root}/images"
data_path = f"{dataset_root}/annotations/sparkles_evaluation_bison_annotations.json"
with open(data_path, 'r') as fr:
self.data = json.load(fr)
self.data = self.data[data_from:data_to]
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
sentence = item['caption']
prompt = self.prompt_template.format(sentence)
label = 'IMAGE#1' if item['true_image_id'] == item['image_candidates'][0]['image_id'] else 'IMAGE#2'
img_path1 = os.path.join(self.image_dir, item['image_candidates'][0]['image_filename'])
img_path2 = os.path.join(self.image_dir, item['image_candidates'][1]['image_filename'])
return {
"img_paths": [img_path1, img_path2],
"sentence": sentence,
"prompt": prompt,
"label": label,
"evaluation_id": item['evaluation_id'],
}
class NLVR2Dataset(Dataset):
def __init__(
self,
dataset_root,
data_from=50,
data_to=100,
):
self.options = "TRUE/FALSE"
self.prompt_template = """Carefully examine a pair of images: the left IMAGE#1<Img><ImageHere></Img> and the right IMAGE#2<Img><ImageHere></Img>.
Determine whether the following statement is true about the pair of images:
'{}'
Jointly reasoning about the statement grounded in IMAGE#1 and IMAGE#2.
The task requires compositional joint reasoning, including about quantities, comparisons, and relations. Let's think step by step.
Please start your response with "Let's think step by step." and end with "Therefore, the answer (TRUE or FALSE) is"."""
self.image_dir = f"{dataset_root}/images"
data_path = f"{dataset_root}/annotations/sparkles_evaluation_nlvr2_annotations.json"
with open(data_path, 'r') as fr:
self.data = json.load(fr)
self.data = self.data[data_from:data_to]
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
sentence = item['sentence']
prompt = self.prompt_template.format(sentence)
label = item['label']
img_path1 = os.path.join(self.image_dir, f"{item['identifier'][:-2]}-img0.png")
img_path2 = os.path.join(self.image_dir, f"{item['identifier'][:-2]}-img1.png")
return {
"img_paths": [img_path1, img_path2],
"sentence": sentence,
"prompt": prompt,
"label": label,
"evaluation_id": item['evaluation_id'],
}
def extract_answer(response, options="TRUE/FALSE"):
options = [option.lower() for option in options.split("/")]
response = response.lower()
# required_words = ["Let's think step by step", "Therefore"]
required_words = ["Therefore"]
for word in required_words:
if word.lower() not in response:
return None
# Find the last occurrence of "Therefore"
answer = response[response.rfind("therefore") + len("therefore"):]
answer = answer.strip().lower()
answer = answer.replace("answer (true or false) is", "answer is")
answer = answer.replace("image #1", "image#1").replace("image #2", "image#2")
answer = answer.replace("answer (image#1 or image#2) is", "answer is")
answer = answer.replace(f"not {options[0]}", options[1]).replace(f"not {options[0]}", options[1])
# "Therefore, we cannot determine if the statement is true or false" -> None
# "Therefore, the statement "A man is sitting" cannot be true and is FALSE." -> FALSE
# "Therefore, the answer is TRUE for Image#2 and FALSE for Image#1. In conclusion, there is one true and one false statement in this comparison." -> NONE
# "Therefore, IMAGE#2 is not the correct match." -> None
# "Therefore, the answer is IMAGE#1, because it more closely matches the caption than IMAGE#2." -> IMAGE#1
if not (f"the answer is {options[0]}," in answer or
f"the answer is {options[1]}," in answer or
f"the answer is {options[0]}." in answer or
f"the answer is {options[1]}." in answer or
f"the answer is {options[0]}:" in answer or
f"the answer is {options[1]}:" in answer or
f"the answer is {options[0]} because" in answer or
f"the answer is {options[1]} because" in answer) and \
(options[0] in answer and options[1] in answer):
# if f"neither {options[0]} nor {options[1]}" in answer or \
# f"{options[0]} or {options[1]}" in answer or \
# f"{options[0]} and {options[1]}" in answer:
return None
# extract the closest matched option in answer
pos0 = answer.find(options[0])
pos1 = answer.find(options[1])
if pos0 == -1 and pos1 == -1:
return None
if pos0 == -1:
return options[1]
if pos1 == -1:
return options[0]
return options[0] if pos0 < pos1 else options[1]
def calculate_score(predictions):
if len(predictions) == 0:
return 0
correct = 0
for prediction in predictions:
if prediction['predict'].lower() == prediction['label'].lower():
correct += 1
return correct / len(predictions)
def evaluate_pairs(model, dataset, answer_path, options="TRUE/FALSE", batch_size=1, num_beams=1, temperature=1.0):
predictions = []
predict_num = 0
for batch in more_itertools.chunked(tqdm(dataset, desc="Running inference"), batch_size):
batch = batch[0]
predict = None
response = ''
while predict is None:
response = model.generate(img_paths=batch['img_paths'], prompt=batch['prompt'],
num_beams=num_beams, temperature=temperature)
predict_num += 1
predict = extract_answer(response, options=options)
if predict is None:
print(f"\nLabel: {batch['label']}; Invalid response: {response}")
answer_dict = {'label': batch['label'], 'prompt': batch['prompt'], 'img_paths': batch['img_paths'],
'predict': predict, 'response': response, 'sentence': batch['sentence'],
'evaluation_id': batch['evaluation_id']}
predictions.append(answer_dict)
acc = calculate_score(predictions)
print(f"Accuracy: {acc} of {len(predictions)} samples by predicting {predict_num} times")
with open(answer_path, "w") as f:
f.write(json.dumps(predictions, indent=4))
class SparklesEvalDataset(Dataset):
def __init__(
self,
dataset_root,
data_path=None,
data_from=0,
data_to=10,
dialogue_turn=1,
):
if not data_path:
data_path = f"{dataset_root}/annotations/sparkles_evaluation_sparkleseval_annotations.json"
self.image_dir = f"{dataset_root}/images"
with open(data_path, 'r') as fr:
self.data = json.load(fr)
self.data = self.data[data_from:data_to]
self.dialogue_turn = dialogue_turn
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
dialogue = item['dialogue']
if self.dialogue_turn == 1:
prompt = dialogue[0]['content']
label = dialogue[1]['content']
images = dialogue[0]['images']
else:
prompt = f"{dialogue[0]['content']}###Assistant: {dialogue[1]['content']}###Human: {dialogue[2]['content']}"
label = dialogue[3]['content']
images= dialogue[0]['images'] + dialogue[2]['images']
img_paths = [os.path.join(self.image_dir, f"{image['image_id']}.jpg") for image in images]
return {
"img_paths": img_paths,
"prompt": prompt,
"label": label,
"dialogue": dialogue,
"evaluation_id": item['evaluation_id'],
}
def evaluate_sparkles(model, dataset, answer_path, batch_size=1, dialogue_turn=1, num_beams=1, temperature=1.0):
predictions = []
for batch in more_itertools.chunked(tqdm(dataset, desc="Running inference"), batch_size):
batch = batch[0]
response = model.generate(img_paths=batch['img_paths'], prompt=batch['prompt'],
num_beams=num_beams, temperature=temperature)
predict = copy.deepcopy(batch['dialogue'])
predict[dialogue_turn*2-1]['content'] = response
predictions.append({
'dialogue': predict,
'evaluation_id': batch['evaluation_id'],
})
with open(answer_path, "w") as f:
f.write(json.dumps(predictions, indent=4))
return predictions
def extract_scores(s, criterion="C1"):
# Split the string into evaluations
evaluations = re.split(r'Evaluating [A-Za-z0-9]+', s)
scores = []
for evaluation in evaluations:
# Find the first rating after a '(criterion)' in each evaluation
match = re.search(fr'\({criterion}\)(.*?)Rating: \[?\[?(\d+\.?\d*)\]?\]?', evaluation, re.DOTALL)
if match:
scores.append(float(match.group(2)))
return scores
def extract_all_scores(response):
# extract the scores, A1_score extract from strings like "rating of A1 is [[8.67]]" -> "8.67"
A1_score = re.findall(r"rating of A1 is \[?\[?(\d+\.?\d*)\]?\]?", response)
A2_score = re.findall(r"rating of A2 is \[?\[?(\d+\.?\d*)\]?\]?", response)
# if didn't find the score, output the response
if len(A1_score) == 0 or len(A2_score) == 0:
print(f"\nAttention: Didn't find the A1_score/A2_score, the response is {response}")
return None, None
# "(C1) ...... Rating: [[8]]" -> "8"
C1_score = extract_scores(response, criterion="C1")
C2_score = extract_scores(response, criterion="C2")
C3_score = extract_scores(response, criterion="C3")
if len(C1_score) != 2 or len(C2_score) != 2 or len(C3_score) != 2:
print(f"\nAttention: Didn't find the C1_score/C2_score/C3_score, the response is {response}")
return None, None
A1_C123_scores = [float(A1_score[0]), float(C1_score[0]), float(C2_score[0]), float(C3_score[0])]
A2_C123_scores = [float(A2_score[0]), float(C1_score[1]), float(C2_score[1]), float(C3_score[1])]
# print(f"\nA1_C123_scores: {A1_C123_scores}; A2_C123_scores: {A2_C123_scores}")
if int(np.mean(A1_C123_scores[1:])) != int(A1_C123_scores[0]):
print(f"\nA1 score not match!")
if int(np.mean(A2_C123_scores[1:])) != int(A2_C123_scores[0]):
print(f"\nA2 score not match!")
return A1_C123_scores, A2_C123_scores
def llm_as_judge(path, judge_model="gpt-3.5-turbo", data=None):
judge_template = """Users will interact with a conversational assistant. The assistant is designed to understand, analyze, and reason about multiple images across two turns of conversation. The assistant is expected to provide highly helpful and exceptionally detailed answers providing comprehensive reasoning regarding the visual content of the images.
Below are images represented by their image ids and captions (delimited by triple quotes):
```json
{images}
```
Next is a dialogue between a user and the assistant regarding the images above:
```
###User Q1:
{Q1}
###Assistant A1:
{A1}
###User Q2:
{Q2}
###Assistant A2:
{A2}
```
Your task as an impartial judge is to evaluate the responses (A1 and A2) provided by the assistant to the user's questions.
Please rate the following three criteria C1, C2, and C3 on a scale of 1-10 for A1 and A2 separately, where a higher score indicates better overall performance:
(C1) Image Understanding and Reasoning: This measures the assistant's ability to accurately identify and describe objects, context, and relationships within and between the images.
(C2) Cross-Image and Cross-Turn Coherence: This evaluates the assistant's ability to maintain a consistent understanding across multiple images and dialogue turns.
(C3) Relevance and Completeness of Responses: This assesses whether the assistant's responses are directly related to the user's inquiries and the images' content, and whether the responses provide thorough, detailed answers.
Begin your evaluation by providing a short explanation for each criterion. Be as objective as possible. After providing your explanation, rate the response on a scale of 1 to 10 by strictly following the format below (note that "5" and "..." are placeholders):
```
* Evaluating A1
- (C1) Explanation: "..." Rating: [[5]]
- (C2) Explanation: "..." Rating: [[5]]
- (C3) Explanation: "..." Rating: [[5]]
Therefore, the overall rating of A1 is [[5]]
* Evaluating A2
- (C1) Explanation: "..." Rating: [[5]]
- (C2) Explanation: "..." Rating: [[5]]
- (C3) Explanation: "..." Rating: [[5]]
Therefore, the overall rating of A2 is [[5]]
```
"""
if data is None:
assert os.path.exists(path), f"File {path} not exists!"
with open(path, 'r') as fr:
data = json.load(fr)
for idx, item in tqdm(enumerate(data), desc=f"Judging by {judge_model}"):
dialogue = item['dialogue']
Q1 = dialogue[0]['content'].replace("<Img><ImageHere></Img>", "")
A1 = dialogue[1]['content']
Q2 = dialogue[2]['content'].replace("<Img><ImageHere></Img>", "")
A2 = dialogue[3]['content']
images = dialogue[0]['images'] + dialogue[2]['images']
prompt = judge_template.format(images=images, Q1=Q1, A1=A1, Q2=Q2, A2=A2)
response = A1_C123_scores = A2_C123_scores = None
while A1_C123_scores is None or A2_C123_scores is None:
response = openai_chat_create(prompt, model=judge_model, max_tokens=1024)
A1_C123_scores, A2_C123_scores = extract_all_scores(response)
item[judge_model] = {"A1_C123_scores": A1_C123_scores, "A2_C123_scores": A2_C123_scores,
"prompt": prompt, "response": response,}
A1_C123_scores_mean = np.mean([item[judge_model]['A1_C123_scores'] for item in data], axis=0)
A2_C123_scores_mean = np.mean([item[judge_model]['A2_C123_scores'] for item in data], axis=0)
print(f"A1_C123_scores_mean: {A1_C123_scores_mean}; A2_C123_scores_mean: {A2_C123_scores_mean}")
with open(path, 'w') as fw:
json.dump(data, fw, indent=4)
return data
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
# set --cfg-path that can be None
parser.add_argument("--cfg-path", type=str, default=None, help="path to config file."
"When set to None, evaluate gpt-4 annotations.")
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
parser.add_argument("--sparkles_root", type=str, default='/path/to/Sparkles/', help="data root")
parser.add_argument("--dataset", type=str, default='NLVR2', help="specify the dataset.")
parser.add_argument("--seed", type=int, default=2023, help="")
parser.add_argument("--data-from", type=int, default=0, help="specify the start idx of data.")
parser.add_argument("--data-to", type=int, default=150, help="specify the end idx of data.")
parser.add_argument("--merge-results", action="store_true", help="merge results from different runs.")
parser.add_argument("--inference", action="store_true", help="inference mode.")
parser.add_argument("--num-beams", type=int, default=1, help="num beams for beam search.")
parser.add_argument("--temperature", type=float, default=1.0, help="temperature for sampling.")
parser.add_argument('--judge_models', nargs='+', default=['gpt-4'], choices=['gpt-4', 'gpt-3.5-turbo'],
help='List of judge models. This argument only works when dataset is SparklesEval.')
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
return args
def setup_seeds(seed=42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
if __name__ == "__main__":
args = parse_args()
setup_seeds(args.seed)
data_from = args.data_from
data_to = args.data_to
num_beams = args.num_beams
temperature = args.temperature
dataset_root = f"{args.sparkles_root}/evaluation/{args.dataset}"
judge_models = args.judge_models
if args.cfg_path is not None:
cfg = Config(args)
ckpt_path = cfg.model_cfg.ckpt
beam = f"_beam{num_beams}" if num_beams > 1 else ""
model_name = f"{ckpt_path.split('/')[-3]}_{ckpt_path.split('/')[-2]}_{ckpt_path.split('/')[-1][:-4]}{beam}"
results_dir = f"{dataset_root}/results"
results_path_name = f"{results_dir}/{args.dataset}_{model_name}"
else:
cfg = None
model_name = "gpt-4"
results_dir = f"{dataset_root}/annotations"
results_path_name = f"{results_dir}/sparkles_evaluation_sparkleseval_annotations"
if not os.path.exists(results_dir):
os.makedirs(results_dir)
if args.inference:
model = None
if cfg and not (args.dataset == 'SparklesEval' and os.path.exists(f"{results_path_name}.json")):
model = MiniGPT4(cfg, [args.gpu_id])
answer_path = f"{results_path_name}_{data_from}to{data_to}.json"
if not os.path.exists(os.path.dirname(answer_path)):
os.makedirs(os.path.dirname(answer_path))
if args.dataset == 'NLVR2':
dataset = NLVR2Dataset(dataset_root=dataset_root, data_from=data_from, data_to=data_to)
evaluate_pairs(model, dataset, answer_path=answer_path, options=dataset.options,
num_beams=num_beams, temperature=temperature)
elif args.dataset == 'BISON':
dataset = BISONDataset(dataset_root=dataset_root, data_from=data_from, data_to=data_to)
evaluate_pairs(model, dataset, answer_path=answer_path, options=dataset.options,
num_beams=num_beams, temperature=temperature)
elif args.dataset == 'SparklesEval':
if os.path.exists(f"{results_path_name}.json"):
# load the same generated dialogues for different judge models to evaluate
data = json.load(open(f"{results_path_name}.json", 'r'))
data = sorted(data, key=lambda x: (int(x['evaluation_id'])))
data = data[data_from:data_to]
else:
dataset = SparklesEvalDataset(dataset_root=dataset_root, dialogue_turn=1, data_path=None,
data_from=data_from, data_to=data_to)
evaluate_sparkles(model, dataset, answer_path=answer_path, dialogue_turn=1,
num_beams=num_beams, temperature=temperature)
dataset = SparklesEvalDataset(dataset_root=dataset_root, dialogue_turn=2, data_path=answer_path,
data_from=data_from-data_from, data_to=data_to-data_from)
data = evaluate_sparkles(model, dataset, answer_path=answer_path, dialogue_turn=2,
num_beams=num_beams, temperature=temperature)
for judge_model in judge_models:
data = llm_as_judge(answer_path, judge_model=judge_model, data=data)
else:
raise NotImplementedError
if args.merge_results:
# find answer files under dir(answer_path) and merge them into one answer file
answer_path = f"{results_path_name}.json"
answer_files = [os.path.join(results_dir, f) for f in os.listdir(results_dir)
if f.startswith(answer_path.split('/')[-1][:-5] + "_") and f.endswith('.json')]
answer_files = list(set(answer_files))
predictions = []
for answer_file in answer_files:
with open(answer_file, 'r') as f:
predictions.extend(json.load(f))
predictions = sorted(predictions, key=lambda x: (int(x['evaluation_id'])))
if args.dataset == 'SparklesEval':
# merge the same generated dialogues for different judge models to evaluate
predictions_dict = {}
for prediction in predictions:
if prediction['evaluation_id'] in predictions_dict:
for judge_model in judge_models:
if judge_model in prediction and judge_model not in predictions_dict[prediction['evaluation_id']]:
predictions_dict[prediction['evaluation_id']][judge_model] = prediction[judge_model]
else:
predictions_dict[prediction['evaluation_id']] = prediction
predictions = list(predictions_dict.values())
html_save_path = f"{results_path_name}.html"
visualize_dialogues_in_html(predictions, prediction_model=model_name,
output_file=html_save_path, judge_models=judge_models)
for judge_model in judge_models:
if judge_model in predictions[0]:
A1_C123_scores_mean = np.mean([item[judge_model]['A1_C123_scores'] for item in predictions], axis=0)
A2_C123_scores_mean = np.mean([item[judge_model]['A2_C123_scores'] for item in predictions], axis=0)
print(f"{judge_model} as judge: A1_C123_scores_mean: {A1_C123_scores_mean}; "
f"A2_C123_scores_mean: {A2_C123_scores_mean}")
# calculate the mean of the last three items of A1_C123_scores_mean and A2_C123_scores_mean
A1 = np.mean(A1_C123_scores_mean[1:])
A2 = np.mean(A2_C123_scores_mean[1:])
overall = (A1 + A2) / 2
print(f"\n{judge_model} as judge: A1: {A1}; A2: {A2}; overall: {overall}")
else:
acc = calculate_score(predictions)
print(f"{args.dataset} Accuracy: {acc:.3f}")
answer_path = f"{results_path_name}_acc{acc:.3f}.json"
html_save_path = f"{results_path_name}_acc{acc:.3f}.html"
visualize_VLtasks_in_html(predictions, output_file=html_save_path)
with open(answer_path, "w") as f:
f.write(json.dumps(predictions, indent=4))
# remove all answer files
for answer_file in answer_files:
os.remove(answer_file)
print(f"Answer file saved to {answer_path}")